How mass spectrometry can be exploited to study AMPK.

Essays Biochem

Protein Phosphorylation (PHOS) laboratory, Université catholique de Louvain and de Duve Institute, Avenue Hippocrate 75, B-1200 Brussels, Belgium.

Published: November 2024

AMP-activated protein kinase (AMPK) is a key regulator of metabolism and a recognised target for the treatment of metabolic diseases such as Type 2 diabetes (T2D). Here, we review how mass spectrometry (MS) can be used to study short-term control by AMPK via protein phosphorylation and long-term control due to changes in protein expression. We discuss how MS can quantify AMPK subunit levels in tissues from different species. We propose hydrogen-deuterium exchange (HDX)-MS to investigate molecular mechanisms of AMPK activation and thermoproteomic profiling (TPP) to assess off-target effects of pharmacological AMPK activators/inhibitors. Lastly, because large MS data sets are generated, we consider different approaches that can be used for their interpretation.

Download full-text PDF

Source
http://dx.doi.org/10.1042/EBC20240009DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
8
ampk
6
spectrometry exploited
4
exploited study
4
study ampk
4
ampk amp-activated
4
amp-activated protein
4
protein kinase
4
kinase ampk
4
ampk key
4

Similar Publications

Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.

View Article and Find Full Text PDF

Development of a novel molecular probe for visualizing mesothelin on the tumor via positron emission tomography.

Eur J Nucl Med Mol Imaging

January 2025

Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.

Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).

View Article and Find Full Text PDF

Biochemical features and biotechnological potential of a proteolytic extract from a psychrophilic Antarctic bacterium.

Braz J Microbiol

January 2025

Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, Uruguay.

Proteases are hydrolases that act on peptide bonds, releasing amino acids and/or oligopeptides, and are involved in essential functions in all organisms. They represent an important segment of the global enzyme market, with applications in the food, leather, detergent, and pharmaceutical industries. Depending on their industrial use, proteases should exhibit high activity under extreme conditions, such as low temperatures, e.

View Article and Find Full Text PDF

Stereoselective Reaction Enabling Simultaneous Analysis of Carbon-Carbon Double-Bond Configuration and the Position of Monounsaturated Fatty Acids through UHPLC-ESI-MRM-MS.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.

Monounsaturated fatty acids (MUFA) are an important class of nutrients and are involved in lipid metabolism. The positions of the C=C bond and cis-trans isomerism have a significant influence on their physiological activity. However, simultaneously detecting these two structural properties has been challenging due to multiple isomers of MUFA.

View Article and Find Full Text PDF

Emerging Per- and Polyfluoroalkyl Substances in Tap Water from the American Healthy Homes Survey II.

Environ Sci Technol

January 2025

U.S. Environmental Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States.

Humans experience widespread exposure to anthropogenic per- and polyfluoroalkyl substances (PFAS) through various media, which can lead to a wide range of negative health impacts. Tap water is an important source of exposure in communities with any degree of contamination but routine or large-scale PFAS monitoring often depends on targeted analytical methods limited to measuring specific PFAS. We analyzed 680 tap water samples from the American Healthy Homes Survey II for PFAS using non-targeted analysis (NTA) to expand the range of detectable PFAS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!