The aim of this study is to establish an effective modeling technique for simulating the performance of photovoltaic modules by calculating their electrical parameters based on the two-diode model. The suggested methodology involves reducing the scope of the study from seven unknown parameters to only three, and that without resorting to any approximations. The first four parameters are calculated analytically based on the data representing the crucial positions on the current-voltage graph and using a new expression of the fill-factor derived from the two-diode equivalent circuit. The remaining parameters are established numerically based on a simple iterative technique adaptable with two sites of data availability. The photovoltaic modeling begins by utilizing the values of key-points. Subsequently, to ensure the proposed approach's adaptability to various scenarios of available information about PV generators, it is invested and applied for an optimization process. The accuracy is evaluated for diverse types of photovoltaic modules, and the results are weighed against widely reviewed numerical methods and evolutionary optimization algorithms in the literature. As a result, the new method demonstrates superior performance, yielding the smallest values for the utilized statistical indicators and reducing compilation time. These findings underscore its flexibility and high efficiency in simulating photovoltaic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269853PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e33946DOI Listing

Publication Analysis

Top Keywords

photovoltaic modules
8
photovoltaic
5
adaptable method
4
method efficient
4
efficient modeling
4
modeling photovoltaic
4
photovoltaic generators'
4
generators' performance
4
based
4
performance based
4

Similar Publications

Maximum Power Point Tracking (MPPT) is a technique employed in photovoltaic (PV) systems to ensure that the modules transfer the maximum generated power to the load. An advanced algorithm, the Improved Optimized Adaptive Differential Conductance (IOADC), was developed by applying Kirchhoff's law within a single diode model framework. The algorithm's performance was evaluated under various solar irradiance levels of 500 W/m, 750 W/m, and 1000 W/m at a constant temperature of 298K, analyzing its impact on power generation and transfer.

View Article and Find Full Text PDF

Correlative Raman-Voltage Microscopy Revealing the Localized Structure-Stress Relationship in Silicon Solar Cells.

ACS Nano

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.

Knowledge of localized strain at the micrometer scale is essential for tailoring the electrical and mechanical properties of ongoing thinning of crystal silicon (c-Si) solar cells. Thinning c-Si wafers below 110 m are susceptible to cracking in manufacturing due to the nonuniform stress distribution at a micrometer region, necessitating a rigorous technique to reveal the localized stress distribution correlating with its device electrical output. In this context, a Raman microscopy integrated with a photovoltage mapping setup with high resolution to the submicrometer scale is developed to acquire correlative Raman-voltage of the localized physical properties at the microcracks on the rear side of c-Si solar cells.

View Article and Find Full Text PDF

The development of devices capable of storing energy harnessed from photons is on the rise, owing to the increasing global energy demand for smart systems. The majority of reports in this field cover the use of integrated type devices, which houses a separate photovoltaic module and supercapacitor or battery. Herein, we are reporting a photocapacitor with a simple two-electrode design, capable of operating without a conventional electrolyte or metal ions.

View Article and Find Full Text PDF

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

Tailored Colloidal Shapes in Precursor Solutions for Efficient Blade-Coated Perovskite Solar Modules.

Adv Mater

January 2025

Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Metal halide perovskite solar cells (PSCs) have emerged as one of the most promising candidates for next-generation photovoltaic technologies. However, perovskite films deposited by blade-coating usually exhibit inferior film morphology compared to those fabricated by spin-coating, which hinders the power conversion efficiency (PCE) and stability of the scalable perovskite solar modules (PSMs). Herein, ellipsoidal colloids are tailored in the perovskite precursor solution by incorporating perovskite colloids and polymer additives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!