Biofilm-associated wound infections in diabetic and immunocompromised patients are an increasing threat due to rising antibiotic resistance. Various wound models have been used to screen for efficient antiinfection treatments. However, results from models do not always match results, and this represents a bottleneck for development of new infection treatments. In this study, a static 2-D microtiter plate-based biofilm model was tested for growing clinically relevant wound isolates in various operating conditions, seeking to identify an optimal setup that would yield physiologically relevant results. Specifically, the tested variables included wound-mimicking growth media, precoating of surface with different proteins, multiwell plates with various surface properties, and the effect of bacterial pre-attachment step. Our results indicated that protein precoating is a key factor for supporting biofilm growth. The same wound isolate responded with significant differences in biofilm formation to different wound-mimicking media. Biofilm dispersal, as a proxy for effectiveness of antibiofilm treatments, was also investigated in response to proteinase K. The dispersal effect of proteinase K showed that the biofilm dispersal is contingent upon the specific wound isolate, with isolates CCUG 35571 and ATCC 6538 showing considerable dispersal responses. In conclusion, this study observed a higher biofilm formation in isolates when a protein precoating of collagen type I was applied but being dependent on the growth media selected. That is why we recommend to use simulated wound fluid or a wound-mimicking growth media to perform similar studies. Furthermore, proteinase K is suggested as an important factor that could affect biofilm dispersal within such models, since biofilm dispersal was induced in isolates CCUG 35571 and ATCC 6538 in simulated wound fluid on precoated collagen type I plates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269870 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e33872 | DOI Listing |
Pharmaceutics
December 2024
Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, Building D, 4th Floor, 06129 Perugia, Italy.
: Chronic skin wounds are characterized by inflammation, persistent infections, and tissue necrosis. The presence of bacterial biofilms prolongs the inflammatory response and delays healing. Ozone is a potent antimicrobial molecule, and many formulations have been used in the advanced therapeutic treatment of chronic wounds.
View Article and Find Full Text PDFMicroorganisms
December 2024
Advanced Wound Care Research & Development, Convatec, Deeside Industrial Park, Deeside CH5 2NU, UK.
Nitric oxide (NO) is a free radical of the human innate immune response to invading pathogens. NO, produced by nitric oxide synthases (NOSs), is used by the immune system to kill microorganisms encapsulated within phagosomes via protein and DNA disruption. Owing to its ability to disperse biofilm-bound microorganisms, penetrate the biofilm matrix, and act as a signal molecule, NO may also be effective as an antibiofilm agent.
View Article and Find Full Text PDFMicroorganisms
November 2024
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy.
Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
() is a type of pathogen that takes advantage of opportunities to infect and form biofilm during infection. Inhibiting biofilm formation is a promising approach for the treatment of biofilm-related infections. Here, Y0-C10-HSL (N-cyclopentyl-n-decanamide) was designed, synthesized, and tested for its effect on biofilm formation, motility, and the () survival assay.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Laboratório de Farmacologia de Antimicrobianos e Microbiologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil.
Introduction: Simvastatin is an antilipidemic drug that has already demonstrated antibacterial activities on oral and non-oral microorganisms. Silver nanoparticles also exhibit antimicrobial properties, particularly for coating implant surfaces. In this study, we evaluated the effects of combining simvastatin with silver nanoparticles on the formation and viability of biofilms consolidated on titanium discs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!