() has tremendous medicinal value with long-established disease curing potential. The present study aimed to assess the hepatoprotective potential of extracts in paracetamol-induced hepatotoxicity in mice. Group I (normal control) were treated with saline 1 ml/kg BW orally for 7 days while Group II (toxicant control) received saline 1 ml/kg BW for 6 days and Paracetamol (1000 mg/kg BW) on day7of the treatment. Group III received Standard drug silymarin (100 mg/kg BW) for 6 days and Paracetamol (1000 mg/kg BW) on day 7of treatment. Groups IV andV were administered with methanol extract (ME) 200 mg/kg BW and aqueous extract (AE) 1000 mg/kg BW for 6 days and Paracetamol (1000 mg/kg BW) on day 7th of the study. Both extracts showed hepatoprotective potential against the toxic effects of paracetamol, evidenced by serum analysis of biomarkers involved in liver injury and histopathological findings. Hepatotoxic mice pretreated with plant extract or silymarin exhibited significant decrease in ALP, AST, and ALT enzyme level while GSH levels were markedly increased. According to histological observations, groups treated with PCM (toxicant control) showed significant necrosis and lymphocyte infiltration, while groups treated with silymarin and plant extract showed preservation of the normal liver structural features. The phytochemical analysis of ME and AE of showed the presence of glycosides, phenolic compounds, tannins, fats, saponins, flavonoids, terpenes, oils, and fats. The antioxidant activity of these two extracts was determined by nitric oxide assay, DPPH assay, and ferric reducing power assay. The methanolic extract exhibited the highest antioxidant potential (78.09 ± 0.0806). The antioxidant potential of aqueous extract was 73.08 ± 0.248. The reducing power for methanolic extract and ascorbic acid (standard) 500 μg/ml was 0.933 and 0.987 respectively. The anti-inflammatory activity of both extracts was demonstrated by methods, namely albumin denaturation, proteinase inhibition, and membrane stabilization assays. The study suggests that extracts have competence for attenuating inflammation, oxidants, and hepatotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269879 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e33998 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!