Enzymatic saccharification is used to convert polysaccharides in lignocellulosic biomass to sugars which are then converted to ethanol or other bio-based fermentation products. The efficacy of commercial cellulase preparations can potentially increase if lytic polysaccharide monooxygenase (LPMO) is included. However, as LPMO requires both a reductant and an oxidant, such as molecular oxygen, a reevaluation of process configurations and conditions is warranted. Saccharification and fermentation of pretreated softwood was investigated in demonstration-scale experiments with 10 m bioreactors using an LPMO-containing cellulase preparation, a xylose-utilizing yeast, and either simultaneous saccharification and fermentation (SSF) or hybrid hydrolysis and fermentation (HHF) with a 24-hour or 48-hour initial phase and with 0.15 vvm aeration before addition of the yeast. The conditions used for HHF, especially with 48 h initial phase, resulted in better glucan conversion, but in poorer ethanol productivity and in poorer initial ethanol yield on consumed sugars than the SSF. In the SSF, hexose sugars such as glucose and mannose were consumed faster than xylose, but, in the end of the fermentation >90% of the xylose had been consumed. Chemical analysis of inhibitory pretreatment by-products indicated that the concentrations of heteroaromatic aldehydes (such as furfural), aromatic aldehydes, and an aromatic ketone decreased as a consequence of the aeration. This was attributed mainly to evaporation caused by the gas flow. The results indicate that further research is needed to fully exploit the advantages of LPMO without compromising fermentation conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269131PMC
http://dx.doi.org/10.3389/fbioe.2024.1419723DOI Listing

Publication Analysis

Top Keywords

saccharification fermentation
12
simultaneous saccharification
8
fermentation
8
hybrid hydrolysis
8
hydrolysis fermentation
8
initial phase
8
comparison simultaneous
4
saccharification
4
fermentation lpmo-supported
4
lpmo-supported hybrid
4

Similar Publications

Optimization of Enzymatic Hydrolysis and Fermentation Processing for Set-Type Oat Yogurt with Favorable Acidity and Coagulated Texture.

Foods

December 2024

Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China.

The key role of enzymatic hydrolysis and fermentation in the sensory quality of set yogurt made from whole oats was demonstrated. The optimal process was established by the orthogonal and response surface methodology based on the acidity, textural, and rheological properties. The results indicated that the enzymatic hydrolysis appropriately consisted of liquefaction with 12 U/mL α-amylase at 70 °C and pH 6.

View Article and Find Full Text PDF

Cellulases are an ensemble of enzymes that hydrolyze cellulose chains into fermentable glucose and hence are widely used in bioethanol production. The last enzyme of the cellulose degradation pathway, β-glucosidase, is inhibited by its product, glucose. The product inhibition by glucose hinders cellulose hydrolysis limiting the saccharification during bioethanol production.

View Article and Find Full Text PDF

Cellulases are of paramount interest for upcoming biorefineries that utilize residue from agriculture and forestry to produce sustainable fuels and chemicals. Specifically, cellulases are used for the conversion of recalcitrant plant biomass to fermentable sugars in a so-called saccharification process. The vast literature on enzymatic saccharification frequently refers to low catalytic rates of cellulases as a main bottleneck for industrial implementation, but such statements are rarely supported by kinetic or thermodynamic considerations.

View Article and Find Full Text PDF

Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification.

Arch Biochem Biophys

December 2024

The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK. Electronic address:

Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C.

View Article and Find Full Text PDF

Saccharification and co-fermentation of lignocellulosic biomass by a cockroach-gut bacterial symbiont and yeast cocktail for bioethanol production.

BMC Biotechnol

December 2024

Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.

Background: The eco-friendly transformation of agro-industrial wastes through microbial bioconversion could address sustainability challenges in line with the United Nations' Sustainable Development Goals. The bulk of agro-industrial waste consists of lignocellulosic materials with fermentable sugars, predominantly cellulose and hemicellulose. A number of pretreatment options have been employed for material saccharification toward successful fermentation into second-generation bioethanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!