Peripheral nerve injury is a debilitating condition that have a profound impact on the overall quality of an individual's life. The repair of peripheral nerve defects continues to present significant challenges in the field. Iron oxide magnetic nanoparticles (IONPs) have been recognized as potent nanotools for promoting the regeneration of peripheral nerves due to their capability as biological carriers and their ability to template the hydrogel structure under an external magnetic field. This research used a fibrin nanofiber hydrogel loaded with IONPs (IONPs/fibrin) to promote the regeneration of peripheral nerves in rats. examination of PC12 cells on various concentrations of IONPs/fibrin hydrogels revealed a remarkable increase in NGF and VEGF expression at 2% IONPs concentration. The biocompatibility and degradation of 2% IONPs/fibrin hydrogel were assessed using the imaging system, demonstrating subcutaneous degradation within a week without immediate inflammation. Bridging a 10-mm sciatic nerve gap in Sprague Dawley rats with 2% IONPs/fibrin hydrogel led to satisfactory morphological recovery of myelinated nerve fibers. And motor functional recovery in the 2% IONPs/fibrin group was comparable to autografts at 6, 9 and 12 weeks postoperatively. Hence, the composite fibrin hydrogel incorporating 2% IONPs exhibits potential for peripheral nerve regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272175PMC
http://dx.doi.org/10.1093/rb/rbae075DOI Listing

Publication Analysis

Top Keywords

peripheral nerve
16
regeneration peripheral
12
fibrin nanofiber
8
nanofiber hydrogel
8
iron oxide
8
oxide magnetic
8
magnetic nanoparticles
8
nerve regeneration
8
peripheral nerves
8
ionps/fibrin hydrogel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!