Neutral radical bis(dithiolene) gold complexes [Au(dt)]˙ are known to exhibit a strong absorption in the 1400-2000 nm NIR absorption range. Here, we demonstrate that the NIR signature of mixed-ligand bis(dithiolene) gold complexes [Au(dt)(dt)]˙ associating two different dithiolene, dt and dt, is found at higher energy, out of the range of the homoleptic analogs [Au(dt)]˙ and [Au(dt)]˙, in the looked-after NIR-II 1000-1400 nm absorption range. An efficient synthetic approach towards precursor mixed-ligand monoanionic gold bis(dithiolene) complexes [Au(dt)(dt)] is reported. Using this strategy, no symmetrical complexes are formed and, upon electrocrystallization, no scrambling was observed in solution, allowing for the isolation of radical gold bis(dithiolene) complex such as [Au(bdt)(Et-thiazdt)]˙ (bdt: benzene-1,2-dithiolate; Et-thiazdt: -ethyl-thiazoline-2-thione-3,4-dithiolate), which behaves as a single-component conductor. It is shown from theoretical calculations that the spin polarization induced by electron repulsions leads to a strong localization of the spin-orbitals, and provides a sound basis to understand, (i) the different ligand-based oxidation potentials, (ii) the NIR optical absorption at notably higher energies and (iii) the larger potential difference of the two redox processes than in the parent symmetric complexes. The solid-state properties of the radical complex [Au(bdt)(Et-thiazdt)]˙ are the consequence of a strongly 1D electronic structure with weakly dimerized chains and electronic localization favoring a semiconducting behavior, stable under pressures up to 18.2 GPa. Altogether, the versatility of the preparation method of [Au(dt)(dt)] salts opens the route for a wide library of different mixed-ligand radical complexes [Au(dt)(dt)]˙ with simultaneously an adaptable absorption in the NIR-II range and the rich structural chemistry of single-component conductors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268496 | PMC |
http://dx.doi.org/10.1039/d4sc03238a | DOI Listing |
J Inorg Biochem
November 2024
Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
Cancer and infection diseases pose severe threats to public health worldwide stressing the need for more effective and efficient treatments. Thus, the search for broad-spectrum activity drugs seems justifiable and urgent. Herein, we investigate the anticancer and antitrypanosomatid (anti-Trypanosoma cruzi) activities of eight monoanionic metal bis(dithiolene) complexes, [PhP][M(R-thiazdt)] with M = Au, Pt, Pd, Ni, containing N-alkyl-1,3-thiazoline-2-thione dithiolene ligands (R-thiazdt) with different alkyl groups (R = Et, tBu).
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China. Electronic address:
Strong molecule-electrode coupling originating from orbit hybridization between gold and the delocalized molecular wires in single-molecule junctions facilitates facile transport towards smart molecular devices. In this paper, we report ultra-highly conductive single-molecule circuits based on highly delocalized nickel bis(dithiolene) (NiS) molecular junctions using scanning tunneling microscope break junction technique. Single-molecule charge transport measurement of both NiS reveals they exhibits high conductance of 10G and 10G, respectively.
View Article and Find Full Text PDFChem Sci
July 2024
UnivRennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) 35042 Rennes France
Neutral radical bis(dithiolene) gold complexes [Au(dt)]˙ are known to exhibit a strong absorption in the 1400-2000 nm NIR absorption range. Here, we demonstrate that the NIR signature of mixed-ligand bis(dithiolene) gold complexes [Au(dt)(dt)]˙ associating two different dithiolene, dt and dt, is found at higher energy, out of the range of the homoleptic analogs [Au(dt)]˙ and [Au(dt)]˙, in the looked-after NIR-II 1000-1400 nm absorption range. An efficient synthetic approach towards precursor mixed-ligand monoanionic gold bis(dithiolene) complexes [Au(dt)(dt)] is reported.
View Article and Find Full Text PDFDalton Trans
July 2024
Departamento de Engenharia e Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal.
Monoanionic gold bis(dithiolene) complexes were recently shown to display activity against ovarian cancer cells, Gram-positive bacteria, strains and the rodent malaria parasite, . To date, only monoanionic gold(III) bis(dithiolene) complexes with a thiazoline backbone substituted with small alkyl chains have been evaluated for biomedical applications. We now analyzed the influence of the length and the hydrophobicity hydrophilicity of these complexes' alkyl chain on their anticancer and antiplasmodial properties.
View Article and Find Full Text PDFPharmaceutics
March 2023
Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066 Bobadela, Portugal.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!