Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Melanoma is a highly invasive skin cancer with limited treatment strategies. Bupivacaine, a commonly used local anesthetic recognized for its safety, has shown promise in combating tumors. 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPSS2) is a key enzyme in the sulfation process and is associated with the development and metastasis of various tumors. This study aimed to explore the mechanism by which bupivacaine inhibits melanoma proliferation and metastasis by targeting PAPSS2.
Methods: The effects of bupivacaine on the proliferation of A375 and A2058 melanoma cells were evaluated using Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU) labeling, and clonogenic assays. Cell migration, invasion, and PAPSS2 expression were evaluated using Transwell experiments and Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) analysis. Additionally, an melanoma tumor model in nude mice was constructed to evaluate the impact of bupivacaine on melanoma growth and metastasis. Immunohistochemistry was used to assess tumor metastasis and PAPSS2 expression levels in the nude mouse model.
Results: Experimental results demonstrated that bupivacaine significantly inhibited melanoma proliferation and invasion compared to the control group. Notably, this inhibitory effect was partially reversed by PAPSS2 overexpression. experiments demonstrated that bupivacaine-treated nude mice exhibited reduced tumor volumes, weights, and fewer lung metastatic foci. Molecular analysis via qRT-PCR and immunohistochemistry analysis further indicated that bupivacaine significantly reduced PAPSS2 in tumor tissues.
Conclusion: This study confirms that bupivacaine, a local anesthetic, can inhibit melanoma proliferation and metastasis by targeting the PAPSS2 signaling pathway. These findings suggest its potential as an anti-tumor medication and present new treatment strategies for melanoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.24976/Discov.Med.202436186.139 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!