Objectives: The inter-phase gap (IPG) offset effect is defined as the dB offset between the linear parts of electrically evoked compound action potential (ECAP) amplitude growth functions for two stimuli differing only in IPG. The method was recently suggested to represent neural health in cochlear implant (CI) users while being unaffected by CI electrode impedances. Hereby, a larger IPG offset effect should reflect better neural health. The aims of the present study were to (1) examine whether the IPG offset effect negatively correlates with the ECAP threshold and the preoperative pure-tone average (PTA) in CI recipients with residual acoustic hearing and (2) investigate the dependency of the IPG offset effect on hair cell survival and intracochlear electrode impedances.

Design: Seventeen adult study participants with residual acoustic hearing at 500 Hz undergoing CI surgery at the University Hospital of Zurich were prospectively enrolled. ECAP thresholds, IPG offset effects, electrocochleography (ECochG) responses to 500 Hz tone bursts, and monopolar electrical impedances were obtained at an apical, middle, and basal electrode set during and between 4 and 12 weeks after CI surgery. Pure-tone audiometry was conducted within 3 weeks before surgery and approximately 6 weeks after surgery. Linear mixed regression analyses and t tests were performed to assess relationships between (changes in) ECAP threshold, IPG offset, impedance, PTA, and ECochG amplitude.

Results: The IPG offset effect positively correlated with the ECAP threshold in intraoperative recordings ( p < 0.001) and did not significantly correlate with the preoperative PTA ( p = 0.999). The IPG offset showed a postoperative decrease for electrode sets that showed an ECochG amplitude drop. This IPG offset decrease was significantly larger than for electrode sets that showed no ECochG amplitude decrease, t (17) = 2.76, p = 0.014. Linear mixed regression analysis showed no systematic effect of electrode impedance changes on the IPG offset effect ( p = 0.263) but suggested a participant-dependent effect of electrode impedance on IPG offset.

Conclusions: The present study results did not reveal the expected relationships between the IPG offset effect and ECAP threshold values or between the IPG offset effect and preoperative acoustic hearing. Changes in electrode impedance did not exhibit a direct impact on the IPG offset effect, although this impact might be individualized among CI recipients. Overall, our findings suggest that the interpretation and application of the IPG offset effect in clinical settings should be approached with caution considering its complex relationships with other cochlear and neural health metrics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637583PMC
http://dx.doi.org/10.1097/AUD.0000000000001556DOI Listing

Publication Analysis

Top Keywords

ipg offset
56
offset
16
neural health
16
acoustic hearing
16
ipg
16
ecap threshold
16
residual acoustic
12
weeks surgery
12
electrode impedance
12
inter-phase gap
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!