The detection of faint magnetic fields from single-electron and nuclear spins at the atomic scale is a long-standing challenge in physics. While current mobile quantum sensors achieve single-electron spin sensitivity, atomic spatial resolution remains elusive for existing techniques. Here we fabricate a single-molecule quantum sensor at the apex of the metallic tip of a scanning tunnelling microscope by attaching Fe atoms and a PTCDA (3,4,9,10-perylenetetracarboxylic-dianhydride) molecule to the tip apex. We address the molecular spin by electron spin resonance and achieve ~100 neV resolution in energy. In a proof-of-principle experiment, we measure the magnetic and electric dipole fields emanating from a single Fe atom and an Ag dimer on an Ag(111) surface with sub-angstrom spatial resolution. Our method enables atomic-scale quantum sensing experiments of electric and magnetic fields on conducting surfaces and may find applications in the sensing of spin-labelled biomolecules and of spin textures in quantum materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486657PMC
http://dx.doi.org/10.1038/s41565-024-01724-zDOI Listing

Publication Analysis

Top Keywords

magnetic fields
12
quantum sensor
8
electric magnetic
8
spatial resolution
8
quantum
5
sensor atomic-scale
4
atomic-scale electric
4
magnetic
4
fields
4
fields detection
4

Similar Publications

Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.

View Article and Find Full Text PDF

Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.

View Article and Find Full Text PDF

Recent Advancements in Localization Technologies for Wireless Capsule Endoscopy: A Technical Review.

Sensors (Basel)

January 2025

Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia.

Conventional endoscopy is limited in its ability to examine the small bowel and perform long-term monitoring due to the risk of infection and tissue perforation. Wireless Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body's internal organs using a small camera that is swallowed like a pill. The existing active locomotion technologies do not have a practical localization system to control the capsule's movement within the body.

View Article and Find Full Text PDF

Magnetic Induction Phase Difference for Cerebral Hemorrhage Detection.

Sensors (Basel)

December 2024

Department of Biomedical Engineering, Army Medical University, The Third Military Medical University, Chongqing 400038, China.

Magnetic induction phase shift is a promising technology for the detection of cerebral hemorrhage, owing to its nonradioactive, noninvasive, and real-time detection properties. To enhance the detection sensitivity and linearity, a zero-flow sensor was proposed. The uniform primary magnetic field and its counteraction were achieved.

View Article and Find Full Text PDF

Diagnosis of Autism Spectrum Disorder (ASD) by Dynamic Functional Connectivity Using GNN-LSTM.

Sensors (Basel)

December 2024

College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.

Early detection of autism spectrum disorder (ASD) is particularly important given its insidious qualities and the high cost of the diagnostic process. Currently, static functional connectivity studies have achieved significant results in the field of ASD detection. However, with the deepening of clinical research, more and more evidence suggests that dynamic functional connectivity analysis can more comprehensively reveal the complex and variable characteristics of brain networks and their underlying mechanisms, thus providing more solid scientific support for computer-aided diagnosis of ASD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!