Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Determination of pasting properties of high quality cassava flour using rapid visco analyzer is expensive and time consuming. The use of mobile near infrared spectroscopy (SCiO™) is an alternative high throughput phenotyping technology for predicting pasting properties of high quality cassava flour traits. However, model development and validation are necessary to verify that reasonable expectations are established for the accuracy of a prediction model. In the context of an ongoing breeding effort, we investigated the use of an inexpensive, portable spectrometer that only records a portion (740-1070 nm) of the whole NIR spectrum to predict cassava pasting properties. Three machine-learning models, namely glmnet, lm, and gbm, implemented in the Caret package in R statistical program, were solely evaluated. Based on calibration statistics (R, RMSE and MAE), we found that model calibrations using glmnet provided the best model for breakdown viscosity, peak viscosity and pasting temperature. The glmnet model using the first derivative, peak viscosity had calibration and validation accuracy of R = 0.56 and R = 0.51 respectively while breakdown had calibration and validation accuracy of R = 0.66 and R = 0.66 respectively. We also found out that stacking of pre-treatments with Moving Average, Savitzky Golay, First Derivative, Second derivative and Standard Normal variate using glmnet model resulted in calibration and validation accuracy of R = 0.65 and R = 0.64 respectively for pasting temperature. The developed calibration model predicted the pasting properties of HQCF with sufficient accuracy for screening purposes. Therefore, SCiO™ can be reliably deployed in screening early-generation breeding materials for pasting properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272776 | PMC |
http://dx.doi.org/10.1038/s41598-024-67299-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!