Laundry wastewater is a significant source of nonylphenol ethoxylate (NPEO) at wastewater treatment plants, where its breakdown forms persistent nonylphenol (NP). NP poses risks as an endocrine disruptor in wildlife and humans. This study investigates the degradation of NPEO and COD in industrial laundry wastewater (LWW) using a two-stage process combining ultrafiltration (UF) and electro-oxidation (EO). UF was used to remove suspended solids, while soluble COD (COD = 239 ± 6 mg.L) and NPEO (NPEO = 341 ± 8 μg.L) were oxidized by the EO process. Different operating parameters were studied such as current density, electrolysis time, type of cathode and supporting electrolyte concentration. Using an experimental design methodology, the optimal conditions for COD and NPEO degradation were recorded. This included achieving 97% degradation of NPEO and 61% degradation of COD, with a total operating cost of 3.65 USD·m. These optimal conditions were recorded at a current density of 15 mA cm for a 120-min reaction period in the presence of 4 g·NaSO L using a graphite cathode. The EO process allowed for reaching the guidelines required for water reuse (NPEO <200 μg.L, COD <100 mg.L) in the initial laundry washing cycles. Furthermore, our results demonstrate that both NP and NPEO compounds, including higher and shorter ethoxylate chains (NPEO), were effectively degraded during the EO process, with removal efficiencies between 94% and 98%. This confirms the EO process's capability to effectively degrade NP, the by-product of NPEO breakdown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142931 | DOI Listing |
Chemosphere
November 2024
Treewater, 61 Rue de la République, 62009, Lyon, France.
Environ Pollut
January 2025
Department of Materials Science and Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109-2117, USA. Electronic address:
Experimental efforts supplemented by modeling gauged whether common additives found in soaps and laundry detergents interfered with polyacrylate adhesive-based capture of microplastics. On the experimental front, poly(2-ethylhexyl acrylate) (PEHA) samples were evaluated using gravimetric analysis, probe tack, and functional assessments of adhesive-coated glass slides immersed into DI water solutions containing both microparticles and additives (solvents, softeners, and non-ionic surfactants). Nylon-6 spheres and polyethylene terephthalate microplastics were chosen for adsorption using a count-based method by ImageJ imaging analysis.
View Article and Find Full Text PDFChemosphere
November 2024
BOSK-Bioproducts, 100-399 rue jacquard, Quebec, QC, G1N4J6, Canada; Research Centre for Eco-Environmental Engineering, Dongguan University of Technology, China.
This research paper deals with a novel method utilizing packed bed electrocoagulation (PBEC) comprising of sacrificial iron electrodes and coupled with extracellular polymeric substances (EPS) used as flocculent agents for the treatment of commercial laundry wastewater (LWW). The study employs stainless steel cathodes, graphite anodes, and scrap iron pieces as sacrificial electrodes, ensuring efficient treatment in dynamic batch mode operation with enhanced contact time facilitated by serpentine flow. The initial characteristics of LWW were COD 579 ± 30 mg/L, TSS of 60 ± 10 mg/L, TS of 622 ± 20 mg/L, turbidity of 110 ± 5 NTU, pH of 9 ± 0.
View Article and Find Full Text PDFSci Total Environ
December 2024
IFP Énergies nouvelles (IFPEN), Rond-point de l'échangeur de Solaize, BP3, 69360 Solaize, France.
Synthetic textiles constitute a significant emission source of microplastics into the environment release by mechanical abrasion during laundering. Only a portion of these microfibers is retained in wastewater treatment plants, and major issues to identify and quantify microfibers remain because of their nature, shape, and size. Most widespread natural (cotton, linen) and synthetic (polyester PET, nylon polyamide PA, viscose) textiles were first analyzed using a pyrolysis and oxidation based-method: the Rock-Eval® device.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland.
In wastewater treatment, two issues have recently received increased attention: nature-based solutions for addressing urban water stress through decentralized treatment and re-use; and emerging pollutants such as microplastics (MPs). At the interface of these, this study investigated living green walls for greywater treatment and their potential for MP removal. A large, pilot-scale green wall was irrigated with greywater (a mix of water collected from laundry, dishwasher, bathroom sinks, and synthetic greywater), and effluent from planted and unplanted sections was compared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!