Titanium-Titanium Junctions in the Knee Corrode, Generating Damage Similar to the Hip.

J Arthroplasty

Implant Research Core, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania.

Published: January 2025

Background: Previous studies identified corrosion between the modular tibial components of total knee arthroplasty devices. However, gaps persist. Compared to the hip, damage modes that occur within taper junctions in the knee remain poorly understood. In this study, we investigated corrosion on total knee arthroplasty components with titanium-titanium junctions. We asked the following question: under typical in vivo cyclic loading conditions, will the same alloy damage modes from total knee arthroplasty devices resemble those documented in the hip?

Methods: A total of 50 paired titanium alloy tibial baseplates and stems were collected and semiquantitatively analyzed using Goldberg corrosion scoring. To characterize damage, a subsection of moderately and severely corroded components was sectioned and imaged using scanning electron and digital optical microscopy.

Results: Of the 100 device components, 95% showed visual evidence of corrosion. The initial contact area between the stem and bore generally occurred 3 mm from the stem taper base. Scanning electron microscopy revealed 4 damage modes, including oxide film formation, crevice corrosion, selective dissolution, and pitting.

Conclusions: Each of the damage modes identified in modular titanium-titanium tibial junctions was previously reported by total hip arthroplasty retrieval studies. Cumulatively, our results suggest that mechanically assisted crevice corrosion promoted this damage in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arth.2024.07.026DOI Listing

Publication Analysis

Top Keywords

damage modes
16
total knee
12
knee arthroplasty
12
titanium-titanium junctions
8
junctions knee
8
arthroplasty devices
8
scanning electron
8
crevice corrosion
8
damage
7
corrosion
6

Similar Publications

Roles of in human health: beyond dental caries.

Front Microbiol

December 2024

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.

() is the main pathogenic bacterium causing dental caries, and the modes in which its traits, such as acid production, acid tolerance, and adhesion that contribute to the dental caries process, has been clarified. However, a growing number of animal experiments and clinical revelations signify that these traits of are not restricted to the detriment of dental tissues. These traits can assist in evading the immune system within body fluids; they empower to adhere not merely to the surface of teeth but also to other tissues such as vascular endothelium; they can additionally trigger inflammatory reactions and inflict damage on various organs, thereby leading to the occurrence of systemic diseases.

View Article and Find Full Text PDF

Pipelines are the primary mode of oil and gas transport in cold regions. Differential frost heaving of frozen and non-frozen soil masses can damage such pipelines, posing economic and environmental risks. The present study investigates the mechanical behaviors of buried pipelines under differential frost heaving forces.

View Article and Find Full Text PDF

Comprehensive Review of Phthalate Exposure: Health Implications, Biomarker Detection and Regulatory Standards.

J Steroid Biochem Mol Biol

December 2024

Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia-7003, Bangladesh; Institute of Glass and Ceramic Research and Testing(IGCRT), Bangladesh Council of Scientific and Industrial Research(BCSIR), Dhaka-1205, Bangladesh.

Phthalates are a wide family of chemicals that are used in many different industrial applications used in many different industrial applications, including the production of plastics, toys, food packaging particularly for kids, and medical equipment. Due to their various chemical and physical properties, phthalates may negatively impact humans, animals, and the environment. Thus the potential for phthalate exposure and harm to humans, animals, and the environment is high because its presence is alarming.

View Article and Find Full Text PDF

Purpose: Ionizing radiation (IR) could induce damage such as DNA damage and oxidative stress. Natural products, like tea, have been demonstrated potential in mitigating these damages. However, the lack of efficient and rapid screening methods for natural products hinders their widespread application.

View Article and Find Full Text PDF

This paper had conducted tensile shear tests on single-lap joints (SLJs)bonded structures of carbon fiber reinforced resin matrix (CFRP) composite laminates with different overlap lengths, overlap widths, overlap model, adherend material, and adhesive layer thicknesses under two environments: room temperature dry state (RTD) and elevated temperature wet state (ETW). The failure modes were observed, and load-displacement curves were obtained. The microscopic morphology of the fracture surface was observed by scanning electron microscope (SEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!