Visible light serves as a crucial medium for vision formation.;however, prolonged or excessive exposure to light is recognized as a significant etiological factor contributing to retinal degenerative diseases. The retina, with its unique structure and adaptability, relies on the homeostasis of cellular functions to maintain visual health. Under normal conditions, the retina can mount adaptive responses to various insults, including light-induced damage. Unfortunately, exposure to intense and excessive light triggers a cascade of pathological alterations in retinal photoreceptor cells, pigment epithelial cells, ganglion cells, and glial cells. These alterations encompass disruption of intracellular REDOX and Ca²⁺ homeostasis, pyroptosis, endoplasmic reticulum stress, autophagy, and the release of inflammatory cytokines, culminating in irreversible retinal damage. We first delineate the mechanisms of retinal light damage through 4 main avenues: mitochondria function, endoplasmic reticulum stress, cell autophagy, and inflammation. Subsequently, we discuss protective strategies against retinal light damage, aiming to guide research toward the prevention and treatment of light-induced retinal conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.survophthal.2024.07.004DOI Listing

Publication Analysis

Top Keywords

retinal light
12
light damage
12
protective strategies
8
endoplasmic reticulum
8
reticulum stress
8
retinal
7
damage
5
light
5
damage mechanisms
4
mechanisms protective
4

Similar Publications

Significance: Stimulus-evoked intrinsic optical signal (IOS) changes in retinal photoreceptors are critical for functional optoretinography (ORG). Optical coherence tomography (OCT), with its depth-resolved imaging capability, has been actively explored for IOS imaging of retinal photoreceptors. However, recent OCT studies have reported conflicting results regarding light-induced changes in the photoreceptor outer segments (OSs), with both elongation and shrinkage being observed.

View Article and Find Full Text PDF

Purpose: Central retinal artery occlusion, also known as an eye stroke, results in visual impairment and functional challenges. Our study objectives were to identify meaningful measures and factors that indicate or enable successful recovery after eye stroke and to determine optimal processes to support research, including exploring barriers and facilitators to successful research participation.

Methods: We used qualitative methods including the 5Ts Framework (target population identification, team composition, time considerations, tips to accommodate older adults, tools for inclusive enrollment of older adults) to provide a guide to the development of the semi-structured interviews and to help facilitate the research process such as the set-up of interviews.

View Article and Find Full Text PDF

Vitamin A supply in the eye and establishment of the visual cycle.

Curr Top Dev Biol

January 2025

Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States. Electronic address:

Animals perceiving light through visual pigments have evolved pathways for absorbing, transporting, and metabolizing the precursors essential for synthesis of their retinylidene chromophores. Over the past decades, our understanding of this metabolism has grown significantly. Through genetic manipulation, researchers gained insights into the metabolic complexity of the pathways mediating the flow of chromophore precursors throughout the body, and their enrichment within the eyes.

View Article and Find Full Text PDF

The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day.

View Article and Find Full Text PDF

Lightweight Retinal Layer Segmentation With Global Reasoning.

IEEE Trans Instrum Meas

May 2024

School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China.

Automatic retinal layer segmentation with medical images, such as optical coherence tomography (OCT) images, serves as an important tool for diagnosing ophthalmic diseases. However, it is challenging to achieve accurate segmentation due to low contrast and blood flow noises presented in the images. In addition, the algorithm should be light-weight to be deployed for practical clinical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!