Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Prior studies have reported inconsistent results regarding the relationships between the integrity of the fornix and parahippocampal cingulum and both memory performance and longitudinal change in performance. In the present study, we examined associations in a sample of cognitively healthy older adults between free water-corrected fractional anisotropy (FA) metrics derived from the fornix and cingulum, baseline memory performance, and 3-year memory change. Neither fornix nor cingulum FA correlated with memory performance at baseline. By contrast, FA of each tract was predictive of memory change, such that greater FA was associated with less longitudinal decline. These associations remained significant after controlling for FA of other white matter tracts and for performance in other cognitive domains. Furthermore, fornix and cingulum FA explained unique variance in memory change. These results suggest that free water-corrected measures of fornix and parahippocampal cingulum integrity are reliable predictors of future memory change in cognitively healthy older adults. The findings for the fornix in particular highlight the utility of correcting for free water when estimating diffusion tensor imaging metrics of white matter integrity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2024.04.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!