Frontal processes as drivers of floating marine debris in coastal areas.

Mar Environ Res

Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia.

Published: September 2024

The influence of floating marine debris (FMD) on coastal and marine communities and ecosystems is undeniable, and attention is increasingly focused on ecologically and biologically important coastal areas. To protect marine life and valuable resources from FMD pollution, identifying FMD accumulation zones is recognized as a priority. One of the coastal ocean processes found governing the distribution of FMD is water convergence (frontal zones). These fronts are driven by various oceanographical factors. To date, the transport and accumulation of FMD in relation to fronts in coastal areas is poorly understood. To address this knowledge gap, we reviewed various types of ocean fronts as well as FMD accumulation along frontal zones in coastal areas defined as the region between the coastline and the shelf break. Frontogenesis (physical processes related to frontal formation) were reviewed alongside studies on FMD accumulation in frontal zones to identify physical factors that drive the pathways and accumulation in these areas. This review will contribute to our understanding of accumulation hotspots of FMD within ocean fronts and identify gaps for further research on developing a proxy for FMD hotspot identification in ecologically important coastal areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2024.106654DOI Listing

Publication Analysis

Top Keywords

coastal areas
20
fmd accumulation
12
frontal zones
12
fmd
9
floating marine
8
marine debris
8
ocean fronts
8
accumulation frontal
8
coastal
7
areas
6

Similar Publications

Background: The Basic Emergency Care (BEC) course was created by the World Health Organization (WHO) in collaboration with the International Committee of the Red Cross (ICRC) and the International Federation for Emergency Medicine (IFEM) to train frontline providers in low-resource settings. This study aims to evaluate long-term retention and maintenance of emergency care knowledge and confidence among University of Nairobi School of Medicine graduates after completing the BEC course.

Methods: This longitudinal, prospective, comparative study was conducted with recent graduates of the University of Nairobi School of Medicine from October 2021 to May 2023.

View Article and Find Full Text PDF

The Arabian/Persian Gulf, a marginal sea of the northern Indian Ocean, has been significantly impacted by human activities, leading to a rise in harmful algal blooms (HABs). This study investigates the summer blooming of an ichthyotoxic phytoflagellate Chattonella marina var. antiqua and associated fish-kill in Kuwaiti waters, connecting the events to a previous dust storm and eutrophication status in the coastal waters of the Northern Arabian Gulf (NAG).

View Article and Find Full Text PDF

Convergent Isobilateral Leaves Increase the Risk for Mangroves Facing Human-Induced Rapid Environmental Changes.

Plant Cell Environ

January 2025

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China.

Understanding plant adaptations in extreme environments is crucial, as these adaptations often confer advantages for survival. However, a significant gap exists regarding the genetic mechanisms underlying these adaptations and their responses to human-induced rapid environmental change (HIREC). This study addresses the question of whether genetic convergence occurs among plants with similar adaptive features, specifically focusing on isobilateral leaves in mangrove species.

View Article and Find Full Text PDF

As marine heatwaves and mass coral bleaching events rise in frequency and severity, there is an increasing need for high-resolution satellite products that accurately predict reef thermal environments over large spatio-temporal scales. Deciding which global sea surface temperature (SST) dataset to use for research or management depends in part on the desired spatial resolution. Here, we evaluate two SST datasets - the lower-resolution CoralTemp v3.

View Article and Find Full Text PDF

Decoding the drivers of variability in chlorophyll-a concentrations in the Pearl River estuary: Intra-annual and inter-annual analyses of environmental influences.

Environ Res

January 2025

School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China.

Temporal variability and associated driving factors of sea surface chlorophyll-a concentration (Chl-a) in coastal waters have been extensively studied worldwide; however, the importance and spatial heterogeneity of these driving factors remain insufficiently documented. This study addressed this gap by investigating the Pearl River Estuary (PRE) from August 2002 to June 2016, using long-term remote sensing-derived data of Chl-a and potential driving factors, including total suspended solids (TSS), precipitation, photosynthetically active radiation (PAR), and sea surface temperature (SST); and in situ measurements of potential driving factors, including river discharge, wind speed, alongshore wind (u), cross-shore wind (v), and tidal range. A pixel-by-pixel correlation analysis was conducted to preliminarily examine the relationships between these potential driving factors and Chl-a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!