Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The inefficient nitrogen removal in constructed wetlands (CWs) can be attributed to insufficient carbon sources for low carbon-to-nitrogen (C/N) ratio wastewater. In this study, sugarcane bagasse fermentation liquid (SBFL) was used as a supplemental carbon source in intermittently aerated CWs to enhance nitrogen removal. The impact of different regulated influent C/N ratios on nitrogen removal and greenhouse gas (GHG) emissions was investigated. Results demonstrated that SBFL addition significantly enhanced the denitrification capacity, resulting in faster NO-N removal compared to sucrose. Moreover, intermittently aerated CWs significantly improved NH-N removal efficiency compared to non-aerated CWs. The highest total nitrogen removal efficiency (98.3 %) was achieved at an influent C/N ratio of 5 in intermittently aerated CWs with SBFL addition. The addition of SBFL resulted in a reduction of NO emissions by 17.8 %-43.7 % compared to sucrose. All CWs exhibited low CH emissions, with SBFL addition (0.035-0.066 mg·mh) resulting in lower emissions compared to sucrose. Additionally, higher abundance of denitrification (nirK, nirS and nosZ) genes as well as more abundant denitrifying bacteria were shown in CWs of SBFL inputs. The results of this study provide a feasible strategy for applying SBFL as a carbon source to improve nitrogen removal efficiency and mitigate GHG emissions in CWs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!