Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoplastics (NPs) have been demonstrated the ability to penetrate plant roots and cause stress. However, the extent of NPs penetration into various root tissues and the corresponding plant defense mechanisms remain unclear. This study examined the penetration and accumulation patterns of polystyrene nanoplastics (PS-NPs) in different cell types within rice roots, and explored how the roots quickly modify their cell wall structure in response. The findings showed that fully developed sclerenchyma cells in rice roots effectively prevented the invasion of PS-NPs. Meanwhile, PS-NPs triggered the accumulation of lignin and suberin in specific cells such as the exodermis, sclerenchyma, and xylem vessels. PS-NPs at a concentration of 50 mg L increased cell wall thickness by 18.6 %, 21.1 %, and 22.4 % in epidermis, exodermis, and sclerenchyma cells, respectively, and decreased root hydraulic conductivity by 14.8 %. qPCR analysis revealed that PS-NPs influenced the cell wall synthesis pathway, promoting the deposition of lignin and suberin monomers on the secondary wall through the up-regulation of genes such as OsLAC and OsABCG. These results demonstrate that PS-NPs can induce cell type-specific strengthening of secondary walls and barrier formation in rice roots, suggesting the potential role of plant secondary wall development in mitigating NPs contamination risks in crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!