In situ nick translation allows the detection of DNase I sensitive and insensitive regions in fixed mammalian mitotic chromosomes. We have determined the difference in DNase I sensitivity between the active and inactive X chromosomes in Microtus agrestis (rodent) cells, along both their euchromatic and constitutive heterochromatic regions. In addition, we analysed the DNase I sensitivity of the constitutive heterochromatic regions in mouse chromosomes. In Microtus agrestis female cells the active X chromosome is sensitive to DNase I along its euchromatic region while the inactive X chromosome is insensitive except for an early replicating region at its distal end. The late replicating constitutive heterochromatic regions, however, in both the active and inactive X chromosome are sensitive to DNase I. In mouse cells on the other hand, the constitutive heterochromatin is insensitive to DNase I both in mitotic chromosomes and interphase nuclei.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01259444DOI Listing

Publication Analysis

Top Keywords

dnase sensitivity
12
constitutive heterochromatic
12
heterochromatic regions
12
constitutive heterochromatin
8
mitotic chromosomes
8
active inactive
8
chromosomes microtus
8
microtus agrestis
8
chromosome sensitive
8
sensitive dnase
8

Similar Publications

A spherical nucleic acid (SNA, AuNPs-aptamer) into CRISPR/Cas12a system combined with poly T-template copper nanoparticles as fluorescence reporter was fabricated to establish an amplification-free sensitive method for Staphylococcus aureus (S. aureus) detection. This method, named PTCas12a, utilizes the concept that the bifunction of SNA recognizes the S.

View Article and Find Full Text PDF

A Chromatography Test Strip of Exonuclease III-Amplified Aptamer for Rapid Identification of Prorocentrum minimum.

Mar Biotechnol (NY)

January 2025

School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China.

Recently, the scale and frequency of harmful algae blooms (HABs) have gradually increased, posing a serious threat to human health, marine ecosystems and economic development. For early warning, a method is required that can quickly detect and monitor microalgae. It is proposed to use aptamer targeted to Prorocentrum minimum, along with exonuclease III (Exo III), gold nanoparticles, target single-stranded DNA and hairpin structure probe to construct a new method, i.

View Article and Find Full Text PDF

Detection of microRNA-21 based on smartly designed ratiometric electrochemical sensor and dual-signal amplification.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China. Electronic address:

MicroRNA (miRNA) serves as an effective and viable biomarker for early diagnosis and monitoring of cancer disorders. It is highly expressed in tumor cells, including lung cancer, liver cancer and lymphoma. Herein, we propose a ratiometric electrochemical sensor for ultrasensitive detection of miRNA-21 using dual signal amplification, hybridization chain reaction and Exo III assisted-amplification.

View Article and Find Full Text PDF

Background: Multi-omics features of cell-free DNA (cfDNA) can effectively improve the performance of non-invasive early diagnosis and prognosis of cancer. However, multimodal characterization of cfDNA remains technically challenging.

Methods: We developed a comprehensive multi-omics solution (COMOS) to specifically obtain an extensive fragmentomics landscape, presented by breakpoint characteristics of nucleosomes, CpG islands, DNase clusters and enhancers, besides typical methylation, copy number alteration of cfDNA.

View Article and Find Full Text PDF

CRISPR/Cas12a with Universal crRNA for Indiscriminate Virus Detection.

Molecules

December 2024

Biotecnovo (Beijing) Co., Ltd., Room 801 Suit C Hengtai Center, Building 3 Gate, 18 North Feng Road, Fengtai District, Beijing 100176, China.

Viruses, known for causing widespread biological harm and even extinction, pose significant challenges to public health. Virus detection is crucial for accurate disease diagnosis and preventing the spread of infections. Recently, the outstanding analytical performance of CRISPR/Cas biosensors has shown great potential and they have been considered as augmenting methods for reverse-transcription polymerase chain reaction (RT-PCR), which was the gold standard for nucleic acid detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!