Chromatin plasticity predetermines neuronal eligibility for memory trace formation.

Science

Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

Published: July 2024

Memories are encoded by sparse populations of neurons but how such sparsity arises remains largely unknown. We found that a neuron's eligibility to be recruited into the memory trace depends on its epigenetic state prior to encoding. Principal neurons in the mouse lateral amygdala display intrinsic chromatin plasticity, which when experimentally elevated favors neuronal allocation into the encoding ensemble. Such chromatin plasticity occurred at genomic regions underlying synaptic plasticity and was accompanied by increased neuronal excitability in single neurons in real time. Lastly, optogenetic silencing of the epigenetically altered neurons prevented memory expression, revealing a cell-autonomous relationship between chromatin plasticity and memory trace formation. These results identify the epigenetic state of a neuron as a key factor enabling information encoding.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adg9982DOI Listing

Publication Analysis

Top Keywords

chromatin plasticity
16
memory trace
12
trace formation
8
epigenetic state
8
chromatin
4
plasticity predetermines
4
predetermines neuronal
4
neuronal eligibility
4
memory
4
eligibility memory
4

Similar Publications

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease associated with microcephaly and poor neurodevelopmental outcomes. Here we show that the Ohia HLHS mouse model, with mutations in Sap130, a chromatin modifier, and Pcdha9, a cell adhesion protein, also exhibits microcephaly associated with mitotic block and increased apoptosis leading to impaired cortical neurogenesis. Transcriptome profiling, DNA methylation, and Sap130 ChIPseq analyses all demonstrate dysregulation of genes associated with autism and cognitive impairment.

View Article and Find Full Text PDF

Progress Toward Epigenetic Targeted Therapies for Childhood Cancer.

Cancers (Basel)

December 2024

Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA.

Among the most significant discoveries from cancer genomics efforts has been the critical role of epigenetic dysregulation in cancer development and progression. Studies across diverse cancer types have revealed frequent mutations in genes encoding epigenetic regulators, alterations in DNA methylation and histone modifications, and a dramatic reorganization of chromatin structure. Epigenetic changes are especially relevant to pediatric cancers, which are often characterized by a low rate of genetic mutations.

View Article and Find Full Text PDF

Pregametogenesis: The Earliest Stages of Gonad and Germline Differentiation in Anuran Amphibians.

Biology (Basel)

December 2024

Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.

The gonads of amphibians, like other vertebrates, consist of somatic tissues, which create a specific environment essential for the differentiation of germline cells. The earliest stages of gametogenesis still remain underexplored in anuran amphibians. We propose to introduce the term "pregametogenesis" for a specific period of gonocyte proliferation and differentiation that occurs exclusively during the early stages of gonadal development.

View Article and Find Full Text PDF

Molecular architecture of the altered cortical complexity in autism.

Mol Autism

January 2025

Human Anatomy Department, Nanjing Medical University, No.101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, People's Republic of China.

Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication challenges, and repetitive behaviors. Despite extensive research, the molecular mechanisms underlying these neurodevelopmental abnormalities remain elusive. We integrated microscale brain gene expression data with macroscale MRI data from 1829 participants, including individuals with ASD and typically developing controls, from the autism brain imaging data exchange I and II.

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!