The crosstalk between efflux pump and resistance gene mutation in .

Gut Microbes

Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.

Published: July 2024

Efflux pumps play a crucial role in the development of antibiotic resistance. The aim of this study was to investigate the relationship between efflux pump gene expression and resistance gene mutations in . Twenty-six clinical strains with varying resistance characteristics were selected for further experiment. Seven susceptible strains were induced to become resistant, and the expression of efflux pump genes and point mutations were recorded. Four susceptible strains were selected to undergo candidate mutation construction, and changes in efflux pump gene expression were detected. Efflux pump knockout strains were constructed, and their effects on preventing and reversing antibiotic resistance gene mutations were assessed. Results showed that the expression of efflux pump genes hefA and hefD was significantly higher in the multidrug-resistant group compared to other groups. During the process of antibiotic-induced resistance, efflux pump gene expression did not exhibit a steady increase or decrease. Strains with the A2143G or A2142G point mutations in 23S rRNA exhibited lower hefA gene expression. Strains with mutations at 87K/91N, 87N/91 G, 87K/91D, or 87N/91Y in gyrA and the 194insertA mutation in rdxA showed higher hefA gene expression compared to the wild-type strain. During the process of antibiotic-induced resistance, the strain with the knockout of the efflux pump gene hefA developed mutations in the 23S rRNA, gyrA, or rdxA genes later compared to the wild-type strain. Knockout of the efflux pump gene could reverse the phenotypic resistance to clarithromycin or metronidazole in some strains but had no effect on reverse resistance gene mutation. This study suggested that different resistance gene point mutations may have varying effects on efflux pump gene expression. Knockout of the efflux pump gene can delay or prevent antibiotic resistance gene mutations to some extent and can reverse phenotypic resistance to clarithromycin and metronidazole in certain strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275522PMC
http://dx.doi.org/10.1080/19490976.2024.2379439DOI Listing

Publication Analysis

Top Keywords

efflux pump
44
pump gene
28
resistance gene
24
gene expression
24
gene
15
resistance
12
antibiotic resistance
12
gene mutations
12
point mutations
12
knockout efflux
12

Similar Publications

Glycyrrhiza uralensis Fisch. attenuates Dioscorea bulbifera L.-induced liver injury by regulating the FXR/Nrf2-BAs-related proteins and intestinal microbiota.

J Ethnopharmacol

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang 712046, People's Republic of China. Electronic address:

Ethnopharmacological Relevance: Dioscorea bulbifera L. (DBL) was a traditional Chinese medicine commonly used to treat goitre and cancer. Nevertheless, its clinical application may lead to liver injury.

View Article and Find Full Text PDF

Mayan Medicinal Plants and Demonstrate Anti-Infective Properties Against the Priority Antibiotic-Resistant Bacteria and .

Plants (Basel)

December 2024

Unidad Médica de Alta Especialidad, Centro Médico Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico.

(1) Background: Carbapenem-resistant (CBRAB) and (CBRPA) are critical and high-priority pathogens that require new therapeutic developments. Medicinal plants are valuable pharmaceutical resources. This study explored the anti-infective properties of Mayan plants, , and .

View Article and Find Full Text PDF

Association Between Diabetes Mellitus-Tuberculosis and the Generation of Drug Resistance.

Microorganisms

December 2024

Laboratorio de Inmunoquímica II, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, Mexico City C.P. 11340, Mexico.

Tuberculosis (TB), caused by (), remains one of the leading infectious causes of death globally, with drug resistance presenting a significant challenge to control efforts. The interplay between type 2 diabetes mellitus (T2DM) and TB introduces additional complexity, as T2DM triples the risk of active TB and exacerbates drug resistance development. This review explores how T2DM-induced metabolic and immune dysregulation fosters the survival of , promoting persistence and the emergence of multidrug-resistant strains.

View Article and Find Full Text PDF

The Role of ClpV in the Physiology and Pathogenicity of subsp. Strain zlm1908.

Microorganisms

December 2024

College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China.

subsp. () is a Gram-negative bacterium responsible for citrus canker, a significant threat to citrus crops. ClpV is a critical protein in the type VI secretion system (T6SS) as an ATPase involved in bacterial motility, adhesion, and pathogenesis to the host for some pathogenic bacteria.

View Article and Find Full Text PDF

This study aimed to explore the interactions among genetic determinants influencing ciprofloxacin resistance in . Treatment with PAβN, an efflux pump inhibitor, resulted in a 4-32-fold reduction in the minimum inhibitory concentration (MIC) across all 18 ciprofloxacin-resistant isolates. Notably, isolates without point mutations reverted from resistance to sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!