In this work, we investigate the capability of using real-time time-dependent density functional theory (RT-TDDFT) in conjunction with a complex absorbing potential (CAP) to simulate the intermolecular Coulombic decay (ICD) processes following the ionization of an inner-valence electron. We examine the ICD dynamics in a series of noncovalent bonded dimer systems, including hydrogen-bonded and purely van der Waals (VdW)-bonded systems. In comparison to previous work, we show that RT-TDDFT simulations with a CAP correctly capture the ICD phenomenon in systems exhibiting a stronger binding energy. The calculated time scales for ICD of the studied systems are in the range of 5-50 fs, in agreement with previous studies. However, there is a breakdown in the accuracy of the methodology for the pure VdW-bonded systems. Overall, the presented RT-TDDFT/CAP methodology provides a powerful tool for differentiating between competing electronic relaxation pathways following inner-valence or core ionization without necessitating any assumptions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299181PMC
http://dx.doi.org/10.1021/acs.jpclett.4c01146DOI Listing

Publication Analysis

Top Keywords

intermolecular coulombic
8
coulombic decay
8
real-time time-dependent
8
time-dependent density
8
density functional
8
functional theory
8
vdw-bonded systems
8
systems
5
modeling intermolecular
4
decay non-hermitian
4

Similar Publications

Understanding the mechanism of saccharides type and concentration affecting texture of freeze-dried pectin-CMC cryogels through experiment and molecular dynamic simulation.

Int J Biol Macromol

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China. Electronic address:

Saccharides are the dominant factor shaping the texture of freeze-dried products. This study investigated the impact of various molecular-weight saccharides at different concentrations on the physical properties and intermolecular interactions of pectin-CMC cryogels by experiment and molecular dynamic (MD) simulations. Results showed that the increased shrinkage of cryogels and enhanced molecular interactions between saccharides and pectin-CMC were mechanisms that enhanced the hardness of cryogels.

View Article and Find Full Text PDF

Weakly Solvating Electrolytes for Safe and Fast-Charging Sodium Metal Batteries.

J Am Chem Soc

December 2024

Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Electrolytes for high-performance sodium metal batteries (SMBs) are expected to have high electrode compatibility, low solvation energy, and nonflammability. However, conventional flammable carbonate ester electrolytes show high Na desolvation energy and poor compatibility with sodium metal anodes, leading to slow Faradaic reactions and significant degradation of SMBs. Herein, we report a weakly solvating electrolytes (WSEs) design developed by an ionized ether-induced solvent molecule polarization strategy.

View Article and Find Full Text PDF

To investigate the halogen substitution effect on the anionic spin crossover (SCO) complexes, azobisphenolate ligands with 5,5'-dihalogen substituents from fluorine to iodine were synthesized, and their anionic Fe complexes , , , and were isolated. The temperature dependence of magnetic susceptibility and crystal structure revealed that , , and are all isostructural and exhibit SCO with the rotational motion of the cation and ligands, whereas shows incomplete SCO. Note that and showed irreversible and reversible cooperative SCO transitions, respectively.

View Article and Find Full Text PDF

Electrolyte Design via Cation-Anion Association Regulation for High-Rate and Dendrite-Free Zinc Metal Batteries at Low Temperature.

J Am Chem Soc

November 2024

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.

Low-temperature zinc metal batteries (ZMBs) are highly challenged by Zn dendrite growth, especially at high current density. Here, starting from the intermolecular insights, we report a cation-anion association modulation strategy by matching different dielectric constant solvents and unveil the relationship between cation-anion association strength and Zn plating/stripping performance at low temperatures. The combination of comprehensive characterizations and theoretical calculations indicates that moderate ion association electrolytes with high ionic conductivity (12.

View Article and Find Full Text PDF

Interatomic and intermolecular decay processes in quantum fluid clusters.

Rep Prog Phys

November 2024

Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, C, Denmark.

Article Synopsis
  • The review investigates electronic decay phenomena in superfluid helium nanodroplets when exposed to extreme ultraviolet radiation, highlighting their unique electronic properties.
  • Key processes include interatomic and intermolecular Coulombic decay, which involve energy transfer and can lead to ionization and low-energy electron emission.
  • The study utilizes advanced experimental and computational techniques, including ultrashort pulses from free-electron lasers, to better understand these interactions and their implications for other systems, particularly in biology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!