Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process, reduce the cost, facilitate the recycling post-process, and thus attractive in the field of large-scale stationary energy storage. However, the long-term cycling performance of such batteries is usually poor. This investigation reveals the unavoidable side reactions between the NASICON-type NaV(PO) (NVP) anode and the commercial liquid electrolyte, leading to serious capacity fading in the symmetric NVP//NVP cells. To resolve this issue, an all-solid-state composite electrolyte is used to replace the liquid electrolyte so that to overcome the side reaction and achieve high anode/electrolyte interfacial stability. The ferroelectric engineering could further improve the interfacial ion conduction, effectively reducing the electrode/electrolyte interfacial resistances. The NVP//NVP cell using the ferroelectric-engineered composite electrolyte can achieve a capacity retention of 86.4% after 650 cycles. Furthermore, the electrolyte can also be used to match the Prussian-blue cathode NaFeFe(CN)·nHO (NFFCN). Outstanding long-term cycling stability has been obtained in the all-solid-state NVP//NFFCN cell over 9000 cycles at a current density of 500 mA g, with a fading rate as low as 0.005% per cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272761PMC
http://dx.doi.org/10.1007/s40820-024-01474-6DOI Listing

Publication Analysis

Top Keywords

ferroelectric-engineered composite
8
long-term cycling
8
liquid electrolyte
8
composite electrolyte
8
electrolyte
5
ultra-stable sodium-ion
4
sodium-ion battery
4
battery enabled
4
enabled all-solid-state
4
all-solid-state ferroelectric-engineered
4

Similar Publications

Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process, reduce the cost, facilitate the recycling post-process, and thus attractive in the field of large-scale stationary energy storage. However, the long-term cycling performance of such batteries is usually poor. This investigation reveals the unavoidable side reactions between the NASICON-type NaV(PO) (NVP) anode and the commercial liquid electrolyte, leading to serious capacity fading in the symmetric NVP//NVP cells.

View Article and Find Full Text PDF

To enhance the compatibility between the polymer-based electrolytes and electrodes, and promote the interfacial ion conduction, a novel approach to engineer the interfaces between all-solid-state composite polymer electrolyte and electrodes using thin layers of ferroelectrics is introduced. The well-designed and ferroelectric-engineered composite polymer electrolyte demonstrates an attractive ionic conductivity of 7.9 × 10 S cm at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!