Renal cell carcinoma (RCC) is characterized by a variety of subtypes, each defined by unique genetic and morphological features. This study utilizes single-cell RNA sequencing to explore the molecular heterogeneity of RCC. A highly proliferative cell subset, termed as "Prol," was discovered within RCC tumors, and its increased presence was linked to poorer patient outcomes. An artificial intelligence network, encompassing traditional regression, machine learning, and deep learning algorithms, was employed to develop a Prol signature capable of predicting prognosis. The signature demonstrated superior performance in predicting RCC prognosis compared to other signatures and exhibited pan-cancer prognostic capabilities. RCC patients with high Prol signature scores exhibited resistance to targeted therapies and immunotherapies. Furthermore, the key gene CEP55 from the Prol signature was validated by both proteinomics and quantitative real time polymerase chain reaction. Our findings may provide new insights into the molecular and cellular mechanisms of RCC and facilitate the development of novel biomarkers and therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272756 | PMC |
http://dx.doi.org/10.1007/s10238-024-01424-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!