A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Foldamer-Based Mechanoresponsive Materials: Molecular Nanoarchitectonics to Advanced Functions. | LitMetric

Foldamer-Based Mechanoresponsive Materials: Molecular Nanoarchitectonics to Advanced Functions.

Langmuir

Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.

Published: September 2024

Artificial molecules that respond to external stimuli such as light, heat, chemical signals, and mechanical force have garnered significant interest due to their tunable functions, variable optical properties, and mechanical responses. Particularly, mechanoresponsive materials featuring molecules that respond to mechanical stress or show force-induced optical changes have been intriguing due to their extraordinary functions. Despite the promising potential of many such materials reported in the past, practical applications have remained limited, primarily because their functions often depend on irreversible covalent bond rupture. Foldamers, oligomers that fold into well-defined secondary structures, offer an alternative class of mechanoactive motifs. These molecules can reversibly sustain mechanical stress and efficiently dissipate energy by transitioning between folded and unfolded states. This review focuses on the emerging properties of foldamer-based mechanoresponsive materials. We begin by highlighting the mechanical responses of foldamers in their molecular form, which have been primarily investigated using single-molecule force spectroscopy and other analytical methods. Following this, we provide a detailed survey of the current trends in foldamer-appended polymers, emphasizing their emerging mechanical and mechanochromic properties. Subsequently, we present an overview of the state-of-the-art advancements in foldamer-appended polymers, showcasing significant reports in this field. This review covers some of the most recent advances in this direction and draws a perspective for further development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c01252DOI Listing

Publication Analysis

Top Keywords

mechanoresponsive materials
12
foldamer-based mechanoresponsive
8
molecules respond
8
mechanical responses
8
mechanical stress
8
foldamer-appended polymers
8
mechanical
6
materials
4
materials molecular
4
molecular nanoarchitectonics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!