Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nonlinear optical (NLO) coherent light sources are widely applied in many areas of science and technology. As the core medium, the NLO material is required to have a wide transparent range, a large NLO response, and a high laser damaged threshold (LDT). It is common knowledge that langasite (LaGaSiO, LGS) crystal has an underdeveloped second-harmonic generation (SHG) coefficient and a small birefringence, which seriously restrict its application in the NLO field, despite that it has a broad transmittance spectrum and a moderate LDT. Herein, we have successfully obtained novel langasite NLO crystals LGSS (LaGaSiSnO) and LGGS (LaGaGeSnO), with short UV absorption edges of 209 and 212 nm, respectively. Incorporating heavy ions Sn into the structure, a distorted BO octahedron was adjusted by the radius difference between Sn and Si/Ge, which caused the strong SHG responses in LGSS (∼10.77 × KDP) and LGGS (∼9.23 × KDP) and increased birefringences of 0.034 and 0.025, respectively. Besides, they also had large energy band gaps (4.95 eV for LGSS, and 4.93 eV for LGGS), which allowed high LDTs with LGSS of 1.3 GW/cm and LGGS of 813 MW/cm. This work demonstrates a new strategy to enhance SHG responses and birefringence for existing NLO materials and enriches langasite family crystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c01835 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!