Global agricultural by-products usually go to waste, especially in developing countries where agricultural products are usually exported as raw products. Such waste streams, once converted to "value-added" products could be an additional source of revenue while simultaneously having positive impacts on the socio-economic well-being of local people. We highlight the utilization of thermochemical techniques to activate and convert agricultural waste streams such as rice and straw husk, coconut fiber, coffee wastes, and okara power wastes commonly found in the world into porous activated carbons and biofuels. Such activated carbons are suitable for various applications in environmental remediation, climate mitigation, energy storage, and conversions such as batteries and supercapacitors, in improving crop productivity and producing useful biofuels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.202300333 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.
View Article and Find Full Text PDFSci Total Environ
January 2025
Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar. Electronic address:
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…).
View Article and Find Full Text PDFWaste Manag
January 2025
Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia; School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Brisbane, Queensland 4072, Australia.
Black soldier fly larvae (BSFL) can valorise different organic matter and yield a product of high nutritional value. The lack of knowledge about the microbial safety of BSFL grown on different organic waste streams influences the commercialisation of BSFL as stockfeed ingredient. This study evaluates the microbial safety of BSFL grown on five different commercial food waste streams collected from two commercial production facilities.
View Article and Find Full Text PDFEvol Comput
January 2025
Chair of Algorithms for Intelligent Systems, University of Passau, Passau, Germany
Evolutionary algorithms make countless random decisions during selection, mutation and crossover operations. These random decisions require a steady stream of random numbers. We analyze the expected number of random bits used throughout a run of an evolutionary algorithm and refer to this as the cost of randomness.
View Article and Find Full Text PDFWater Environ Res
January 2025
Arizona State University, Tempe, Arizona, USA.
Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!