Exploring the scope of biocatalytic transformations in the absence of enzyme structures without extensive experimentation is a challenging task. To expand the limited substrate capacity of carrot-mediated bioreduction and hunt for new medicinally relevant ketones with minimum cost of labor and time, we deployed a practical method inspired by ligand-based drug design. Through analyzing collected literature data and building pharmacophore and reactivity prediction models, we screened a self-built virtual library of >8000 ketones bearing the most frequently used -heterocycles and functional groups in drug discovery. Representative examples were validated, expanding the bioreduction substrate scope. The public availability of our models alongside the straightforward screening workflow makes it time-, labor-, and cost-saving to evaluate unknown bioreduction substrates for medicinal chemistry applications, especially for a large set of structurally differentiated ketones. Our studies also showcase the novelty of utilizing medicinal chemistry principles to solve a general biocatalysis problem.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.4c01129DOI Listing

Publication Analysis

Top Keywords

medicinally relevant
8
bioreduction substrates
8
inspired ligand-based
8
ligand-based drug
8
drug design
8
medicinal chemistry
8
mining medicinally
4
bioreduction
4
relevant bioreduction
4
substrates inspired
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!