AI Article Synopsis

  • Microorganisms in groundwater play a key role in breaking down petroleum hydrocarbons (PHCs) at contaminated sites, but most research has only focused on PHC-specific microbial communities.
  • This study investigates a petrochemical site affected by multi-component contamination (both PHCs and sulfates), analyzing the relationships between environmental factors and microbial diversity.
  • Findings indicate that different production processes create distinct microbial structures; while pollution reduces overall species richness, it increases the presence of specific hydrocarbon-degrading and sulfate-reducing microorganisms, suggesting sulfates enhance PHC degradation.

Article Abstract

Microorganisms in groundwater at petroleum hydrocarbon (PHC)-contaminated sites are crucial for PHC natural attenuation. Studies mainly focused on the microbial communities and functions in groundwater contaminated by PHC only. However, due to diverse raw and auxiliary materials and the complex production processes, in some petrochemical sites, groundwater suffered multi-component contamination, but the microbial structure remains unclear. To solve the problem, in the study, a petrochemical enterprise site, where the groundwater suffered multi-component pollution by PHC and sulfates, was selected. Using hydrochemistry, 16S rRNA gene, and metagenomic sequencing analyses, the relationships among electron acceptors, microbial diversity, functional genes, and their interactions were investigated. Results showed that different production processes led to different microbial structures. Overall, pollution reduced species richness but increased the abundance of specific species. The multi-component contamination multiplied a considerable number of hydrocarbon-degrading and sulfate-reducing microorganisms, and the introduced sulfates might have promoted the biodegradation of PHC. PRACTITIONER POINTS: The compound pollution of the site changed the microbial community structure. Sulfate can promote the degradation of petroleum hydrocarbons by hydrocarbon-degrading microorganisms. The combined contamination of petroleum hydrocarbons and sulfates will decrease the species richness but increase the abundance of endemic species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wer.11085DOI Listing

Publication Analysis

Top Keywords

microbial diversity
8
diversity functional
8
functional genes
8
production processes
8
groundwater suffered
8
suffered multi-component
8
multi-component contamination
8
species richness
8
petroleum hydrocarbons
8
groundwater
5

Similar Publications

Essential oil and phenolic compounds in different organs and developmental stages of Monarda didyma L., and their biological activity.

Planta

January 2025

Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02-776, Warsaw, Poland.

Plant development has a greater impact on the chemical composition of inflorescences than of the leaves and stems of Monarda didyma plants. Monarda didyma L. is a well-known ornamental and aromatic plant.

View Article and Find Full Text PDF

Unlabelled: Global aquaculture production faces the challenge of biologically cycling nitrogenous waste. Biofloc technology (BFT) systems offer the potential to reduce water consumption and eliminate waste products by using beneficial microorganisms to convert waste into usable nutrients or non-toxic molecules. Unlike flow-through systems (FTS), which depend on continuous water exchange and result in higher operational costs as well as limited microbiome stability, BFT operates without the need for constant water exchange.

View Article and Find Full Text PDF

Phylogenetic analyses are crucial for understanding microbial evolution and infectious disease transmission. Bacterial phylogenies are often inferred from SNP alignments, with SNPs as the fundamental signal within these data. SNP alignments can be reduced to a 'strict core' by removing those sites that do not have data present in every sample.

View Article and Find Full Text PDF

The gut-brain axis is a bidirectional communication pathway that modulates cognitive function. A dysfunctional gut-brain axis has been associated with cognitive impairments during aging. Therefore, we propose evaluating whether modulation of the gut microbiota through fecal microbiota transplantation (FMT) from young-trained donors (YT) to middle-aged or aged mice could enhance brain function and cognition in old age.

View Article and Find Full Text PDF

Seaweed, a promising source of nutritional proteins, including protein hydrolysates, bioactive peptides, phycobiliproteins, and lectins with multi-biological activities. Seaweeds-derived proteins and peptides have attracted increasing interest for their potential applications in dietary supplements, functional foods, and pharmaceuticals industries. This work aims to comprehensively review the preparation methods and virtual screening strategies for seaweed-derived functional peptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!