Marine sponges have recently emerged as efficient natural environmental DNA (eDNA) samplers. The ability of sponges to accumulate eDNA provides an exciting opportunity to reconstruct contemporary communities and ecosystems with high temporal and spatial precision. However, the use of historical eDNA, trapped within the vast number of specimens stored in scientific collections, opens up the opportunity to begin to reconstruct the communities and ecosystems of the past. Here, we define the term 'heDNA' to denote the historical environmental DNA that can be obtained from the recent past with high spatial and temporal accuracy. Using a variety of Antarctic sponge specimens stored in an extensive marine invertebrate collection, we were able to recover information on Antarctic fish biodiversity from specimens up to 20 years old. We successfully recovered 64 fish heDNA signals from 27 sponge specimens. Alpha diversity measures did not differ among preservation methods, but sponges stored frozen had a significantly different fish community composition compared to those stored dry or in ethanol. Our results show that we were consistently and reliably able to extract the heDNA trapped within marine sponge specimens, thereby enabling the reconstruction and investigation of communities and ecosystems of the recent past with a spatial and temporal resolution previously unattainable. Future research into heDNA extraction from other preservation methods, as well as the impact of specimen age and collection method, will strengthen and expand the opportunities for this novel resource to access new knowledge on ecological change during the last century.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.14001 | DOI Listing |
Phytopathology
January 2025
Virginia Polytechnic Institute and State University, School of Plant and Environmental Science, Blacksburg, Virginia, United States;
Diseases that affect the vascular system or the pith are of great economic impact since they can rapidly destroy the affected plants, leading to complete loss in production. Fast and precise identification is thus important to inform containment and management, but many identification methods are slow because they are culture-dependent and they do not reach strain resolution. Here we used culture-independent long-read metagenomic sequencing of DNA extracted directly from stems of two tomato samples that displayed wilt symptoms.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Cross-feeding involves microbes consuming exudates of other surrounding microbes, mediating elemental cycling. Characterizing the diversity of cross-feeding pathways in ocean microbes illuminates evolutionary forces driving self-organization of ocean ecosystems. Here, we uncover a purine and pyrimidine cross-feeding network in globally abundant groups.
View Article and Find Full Text PDFFunct Plant Biol
January 2025
National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan.
Rice (Oryza sativa ) is a crucial staple crop worldwide, providing nutrition to more than half of the global population. Nonetheless, the sustainability of grain production is increasingly jeopardized by both biotic and abiotic stressors exacerbated by climate change, which increases the crop's rvulnerability to pests and diseases. Genome-editing by clustered regularly interspaced short palindromic repeats and CRISPR-associated Protein 9 (CRISPR-Cas9) presents a potential solution for enhancing rice productivity and resilience under climatic stress.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yale School of Medicine, New Haven, CT, USA.
Background: While the apolipoprotein E (APOE) ε4 allele is a well-known risk factor for late-onset Alzheimer's disease (LOAD), not all carriers develop the condition, suggesting the presence of resilience and/or risk factors. The molecular signatures of resilience/risk in the brain, however, have not been thoroughly described, partly due to the scarcity of healthy APOEe4 carriers. This study addresses this gap using a novel multi-tissue, multi-omic dataset from the Religious Order Study and Memory and Aging Project cohorts highly enriched in APOEe4 carriers with and without LOAD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Washington, Seattle, WA, USA.
Background: Late Onset Alzheimer's Disease (LOAD) is the most common neurodegenerative disorder. Carriers of an ɛ4 allele of the apolipoprotein E gene (APOE) have significantly increased risk of developing LOAD. LOAD is also strongly sex biased.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!