Machine Learning Screening and Validation of PANoptosis-Related Gene Signatures in Sepsis.

J Inflamm Res

Department of Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.

Published: July 2024

Background: Sepsis is a syndrome marked by life-threatening organ dysfunction and a disrupted host immune response to infection. PANoptosis is a recent conceptual development, which emphasises the interconnectedness among multiple programmed cell deaths in various diseases. Nevertheless, the role of PANoptosis in sepsis is still unclear.

Methods: We utilized the GSE65682 dataset to identify PANoptosis-related genes (PRGs) and associated immune characteristics in sepsis, classified sepsis samples based on PRGs using the ConsensusClusterPlus method and applied the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm to identify cluster-specific hub genes. Based on PANoptosis -specific DEGs, we compared results from machine learning models and the best-performing model was selected. Predictive efficiency was validated through external dataset, nomogram, survival analysis, quantitative real-time PCR, and western blot.

Results: The expression levels of PRGs were generally dysregulated in sepsis patients compared with normal samples, and higher PRGs expression correlated with increased immune cell infiltration. In addition, two distinct PANoptosis-related clusters were defined, and functional analysis indicated that DEGs associated with these clusters were primarily linked to immune-related pathways. The SVM model was selected as best-performing model, with lower residuals and the highest area under the curve (AUC = 0.967), which was then validated in an external dataset (AUC = 0.989) and through in vivo experiments. Additional validation through nomogram and survival analysis further confirmed its substantial predictive efficacy.

Conclusion: Our findings exposed the intricate association between PANoptosis and sepsis, offering important insights on sepsis diagnosis and potential therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268777PMC
http://dx.doi.org/10.2147/JIR.S461809DOI Listing

Publication Analysis

Top Keywords

machine learning
8
sepsis
8
panoptosis sepsis
8
best-performing model
8
model selected
8
validated external
8
external dataset
8
nomogram survival
8
survival analysis
8
learning screening
4

Similar Publications

Objective: This study evaluates the utility of word embeddings, generated by large language models (LLMs), for medical diagnosis by comparing the semantic proximity of symptoms to their eponymic disease embedding ("eponymic condition") and the mean of all symptom embeddings associated with a disease ("ensemble mean").

Materials And Methods: Symptom data for 5 diagnostically challenging pediatric diseases-CHARGE syndrome, Cowden disease, POEMS syndrome, Rheumatic fever, and Tuberous sclerosis-were collected from PubMed. Using the Ada-002 embedding model, disease names and symptoms were translated into vector representations in a high-dimensional space.

View Article and Find Full Text PDF

Transcription factor prediction using protein 3D secondary structures.

Bioinformatics

January 2025

Institute for Computational Systems Biology, Universität Hamburg, Hamburg, 22761, Germany.

Motivation: Transcription factors (TFs) are DNA-binding proteins that regulate gene expression. Traditional methods predict a protein as a TF if the protein contains any DNA-binding domains (DBDs) of known TFs. However, this approach fails to identify a novel TF that does not contain any known DBDs.

View Article and Find Full Text PDF

Background: Postoperative delirium (POD) is a common complication after major surgery and is associated with poor outcomes in older adults. Early identification of patients at high risk of POD can enable targeted prevention efforts. However, existing POD prediction models require inpatient data collected during the hospital stay, which delays predictions and limits scalability.

View Article and Find Full Text PDF

Importance: Recently, the US Food and Drug Administration gave premarketing approval to an algorithm based on its purported ability to identify individuals at genetic risk for opioid use disorder (OUD). However, the clinical utility of the candidate genetic variants included in the algorithm has not been independently demonstrated.

Objective: To assess the utility of 15 genetic variants from an algorithm intended to predict OUD risk.

View Article and Find Full Text PDF

Purpose: To extract conjunctival bulbar redness from standardized high-resolution ocular surface photographs of a novel imaging system by implementing an image analysis pipeline.

Methods: Data from two trials (healthy; outgoing ophthalmic clinic) were collected, processed, and used to train a machine learning model for ocular surface segmentation. Various regions of interest were defined to globally and locally extract a redness biomarker based on color intensity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!