Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: The research focused on analyzing the UGT gene family in , which plays a crucial role in the plant's metabolism and glycosylation of secondary metabolites. The study identified 125 UGTs using conserved plant secondary product glycosyltransferase (PSPG) motif amino acid sequences. These UGT genes were categorized into 17 groups (A-Q) through phylogenetic analysis, showing their distribution across 10 chromosomes in . The expansion of the CsUGT gene family was attributed to tandem and duplication events, as suggested by gene duplication analysis. Furthermore, the study found various cis-acting regulatory elements related to phytohormones and stress responses in CsUGT promoter regions. Subcellular localization analysis revealed that CsUGT is present in the cytoplasm, chloroplast, and nucleus. The study revealed that CsUGT plays a significant role in various biological processes, cellular components, and molecular functions as highlighted by Gene Ontology analysis. Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that some CsUGTs are associated with the biosynthesis of secondary metabolites. This research provides valuable insights into the genomic organization, evolutionary history, and potential regulatory mechanisms of UGT genes in . It lays the foundation for further exploration of their specific biological roles and potential applications in the plant's metabolism and stress responses. These findings contribute to a better understanding of the UGT gene family and its relevance to the metabolic pathways in .
Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04025-3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263533 | PMC |
http://dx.doi.org/10.1007/s13205-024-04025-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!