The introduction of immune checkpoint inhibitors (ICIs) has revolutionized the treatment landscape for numerous tumor types, including cervical and endometrial cancers. Multiple ICIs against programmed cell death-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) have demonstrated encouraging outcomes in controlled clinical studies for advanced cervical and endometrial cancers. For advanced cervical cancer, approved ICIs as second-line treatment include cemiplimab, nivolumab, and pembrolizumab as single agents. In the first-line treatment setting, options include pembrolizumab alone or in combination with bevacizumab, as well as atezolizumab combined with a backbone platinum-based chemotherapy plus bevacizumab. Additionally, for locally advanced cervical cancer, pembrolizumab is recommended alongside concurrent chemoradiotherapy. For endometrial cancer, pembrolizumab monotherapy, pembrolizumab in combination with lenvatinib, and dostarlimab are currently approved as second-line treatment options. Moreover, either dostarlimab or pembrolizumab can be added to first-line platinum-based chemotherapy for mismatch repair deficient malignancies. Although the inclusion of these agents in clinical practice has led to improved overall response rates and survival outcomes, many patients still lack benefits, possibly due to multiple intrinsic and adaptive resistance mechanisms to immunotherapy. This review aims to highlight the rationale for utilizing ICIs and their current role, while also delineating the proposed mechanisms of resistance to ICIs in cervical and endometrial cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267150 | PMC |
http://dx.doi.org/10.20517/cdr.2023.120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!