AI Article Synopsis

  • Traumatic brain injury (TBI) disrupts brain function due to external forces, and current treatments are ineffective, leading researchers to investigate the neuroprotective effects of MOTS-c.
  • In a study using mice, it was found that MOTS-c levels were lower after TBI, but administering it improved cognitive and motor functions.
  • Through transcriptomic and metabolomic analyses, various significantly altered genes and metabolites were identified, revealing pathways that MOTS-c may influence to provide neuroprotection after TBI.

Article Abstract

Background: Traumatic brain injury (TBI) is a condition characterized by structural and physiological disruptions in brain function caused by external forces. However, as the highly complex and heterogenous nature of TBI, effective treatments are currently lacking. Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) has shown notable antinociceptive and anti-inflammatory effects, yet its detailed neuroprotective effects and mode of action remain incompletely understood. This study investigated the neuroprotective effects and the underlying mechanisms of MOTS-c.

Methods: Adult male C57BL/6 mice were randomly divided into three groups: control (CON) group, MOTS-c group and TBI group. Enzyme-linked immunosorbent assay (ELISA) kit method was used to measure the expression levels of MOTS-c in different groups. Behavioral tests were conducted to assess the effects of MOTS-c. Then, transcriptomics and metabolomics were performed to search Differentially Expressed Genes (DEGs) and Differentially Expressed Metabolites (DEMs), respectively. Moreover, the integrated transcriptomics and metabolomics analysis were employed using R packages and online Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

Results: ELISA kit method showed that TBI resulted in a decrease in the expression of MOTS-c. and peripheral administration of MOTS-c could enter the brain tissue after TBI. Behavioral tests revealed that MOTS-c improved memory, learning, and motor function impairments in TBI mice. Additionally, transcriptomic analysis screened 159 differentially expressed genes. Metabolomic analysis identified 491 metabolites with significant differences. Integrated analysis found 14 KEGG pathways, primarily related to metabolic pathways. Besides, several signaling pathways were enriched, including neuroactive ligand-receptor interaction and retrograde endocannabinoid signaling.

Conclusion: TBI reduced the expression of MOTS-c. MOTS-c reduced inflammatory responses, molecular damage, and cell death by down-regulating macrophage migration inhibitory factor (MIF) expression and activating the retrograde endocannabinoid signaling pathway. In addition, MOTS-c alleviated the response to hypoxic stress and enhanced lipid β-oxidation to provide energy for the body following TBI. Overall, our study offered new insights into the neuroprotective mechanisms of MOTS-c in TBI mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268520PMC
http://dx.doi.org/10.2147/DDDT.S460265DOI Listing

Publication Analysis

Top Keywords

mots-c
12
tbi mice
12
differentially expressed
12
tbi
10
mots-c tbi
8
neuroprotective effects
8
elisa kit
8
kit method
8
behavioral tests
8
transcriptomics metabolomics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!