Deep lakes are critical for freshwater storage, yet they are struggling against major ecological issues from climate change and nutrient pollution. A comprehensive understanding of internal feedback mechanisms is crucial for regulating nutrients in these lakes. A five-year study was conducted on the diatom community and environment in Lake Fuxian, China's largest deep freshwater lake, which is becoming eutrophic. The results indicate a shift in the diatom community from a stable state dominated by a single species to a rapid seasonal fluctuation, and there is a significant increase in diatom biomass. Specifically, stable stratification and low nutrient concentrations are limiting the growth of diatom biomass and maintaining the dominance of . Nutrients in the hypolimnion were replenished in the epilimnion during the extreme cold of winter, triggering a shift in the diatom community. This shift may imply that future climate change will exacerbate the positive feedback of hypoxia-nutrient release of algal blooms, potentially triggering a regime shift in the ecosystem of the entire lake. This study underscores the fact that climate change alters the internal feedback mechanisms of deep lakes, reducing ecosystem stability, and provides a scientific basis for further clarification of protection measures for deep lakes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268934PMC
http://dx.doi.org/10.1002/ece3.70052DOI Listing

Publication Analysis

Top Keywords

deep lakes
12
climate change
12
diatom community
12
extreme cold
8
internal feedback
8
feedback mechanisms
8
shift diatom
8
diatom biomass
8
deep
5
diatom
5

Similar Publications

Applying Ra and Ra to Trace Lateral Groundwater Discharge into Lake Qinghai, China.

Ground Water

December 2024

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.

Quantifying lacustrine groundwater discharge (LGD) is important for understanding the dynamics of lake ecosystems and their expansion. This study focuses on Lake Qinghai, employing radium isotope models to evaluate the contributions of both shallow and deep groundwater. The data indicate that the activity of Ra and Ra demonstrates a pronounced gradient, decreasing from the shoreline to the center of Lake Qinghai.

View Article and Find Full Text PDF

Temperature alters bacterial community structure in sediment of mountain stream.

Sci Rep

December 2024

Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao, Shandong, China.

Temperature and nutrients are known as crucial drivers for the variations of bacterial community structure and functions in oceans and lakes. However, their significance and mechanisms in influencing the bacterial community structure and function in mountain stream remain unclear. In this study, we investigated the spatiotemporal patterns of the bacterial communities and the main environmental factors in the Taizicheng River, a high-latitude mountainous stream, to reveal the main driving factors for sedimental bacterial communities.

View Article and Find Full Text PDF

In freshwater lakes and rivers, cyanobacteria belonging to the family Leptolyngbyaceae bore > 1 mm deep into limestone pebbles by dissolving carbonate at the tip of their 3-8 μm-thick filaments. The abundance of these borings decreases downward while it is so high at the rock surface that micrometric debris is formed. Moreover, the disintegrated material on the pebbles' surface can be easily removed, for instance, when pebbles are grinding against each other due to wave or current action or when insect larvae settle and scratch loosened grains from the surface while constructing their cases.

View Article and Find Full Text PDF

Unlabelled: Climate and atmospheric deposition interact with watershed properties to drive dissolved organic carbon (DOC) concentrations in lakes. Because drivers of DOC concentration are inter-related and interact, it is challenging to assign a single dominant driver to changes in lake DOC concentration across spatiotemporal scales. Leveraging forty years of data across sixteen lakes, we used structural equation modeling to show that the impact of climate, as moderated by watershed characteristics, has become more dominant in recent decades, superseding the influence of sulfate deposition that was observed in the 1980s.

View Article and Find Full Text PDF
Article Synopsis
  • Eutrophication is a major environmental issue for global lakes, heavily influenced by the presence and composition of particulate organic matter (POM).
  • The study characterized POM from seven Yangtze River lakes, revealing it primarily originates from autochthonous sources (62.7%) and showing that labile compounds increase as trophic states rise.
  • Findings suggest that as lake eutrophication progresses, the increased presence of autochthonous POM and labile compounds may further exacerbate the eutrophication process through positive feedback mechanisms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!