The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Palamidis (EU register number RECYC325), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migrations of 0.1 and 0.15 μg/kg food, derived from the exposure scenarios for infants and toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267167PMC
http://dx.doi.org/10.2903/j.efsa.2024.8916DOI Listing

Publication Analysis

Top Keywords

recycled pet
12
process palamidis
8
erema basic
8
basic technology
8
post-consumer pet
8
food contact
8
contact materials
8
recycling process
8
challenge test
8
test provided
8

Similar Publications

This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles' microscopic characteristics. Key metrics such as viscosity, density, crystallinity, amorphous phase relaxation, and microcavitation were assessed using response surface methodology (RSM). Statistical analysis, including Analysis of variance (ANOVA) and its power, supported the interpretation of results.

View Article and Find Full Text PDF

With the growing interest in nanofibers and the urgent need to address environmental concerns associated with plastic waste, there is an increasing focus on using recycled materials to develop advanced healthcare solutions. This study explores the potential of recycled poly(ethylene terephthalate) (PET) nanofibers, functionalized with copper-enhanced alginate, for applications in wound dressings. Nanofibers with desirable antimicrobial properties were developed using chemical recycling and electrospinning techniques, offering a sustainable and effective option for managing wound infections and promoting healing.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.

View Article and Find Full Text PDF

The paper starts by describing the manufacturing process of cups thermoformed from extruded foils of 80% recycled PET (80r-PET), which comprises heating, hot deep drawing and cooling. The 80r-PET foils were heated up to 120 °C, at heating rates of the order of hundreds °C/min, and deep drawn with multiple punchers, having a depth-to-width ratio exceeding 1:1. After puncher-assisted deformation, the cups were air blown away from the punchers, thus being "frozen" in the deformed state.

View Article and Find Full Text PDF

Selective Recycling of Mixed Polyesters via Heterogeneous Photothermal Catalysis.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.

The selective recycling of mixed plastic wastes with similar structural units is challenging. While heterogeneous catalysis shows potential for selective recycling, challenges such as complex mass transfer at multiphase interfaces and unclear catalytic mechanisms have slowed progress. In this study, a breakthrough in recycling mixed polyester wastes is introduced using heterogeneous photothermal catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!