The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process KGL (EU register number RECYC326), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migrations of 0.1 and 0.15 μg/kg food, derived from the exposure scenarios for infants and toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267159 | PMC |
http://dx.doi.org/10.2903/j.efsa.2024.8915 | DOI Listing |
Metab Eng Commun
December 2024
Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
Polyethylene Terephthalate (PET) is a petroleum-based plastic polymer that, by design, can last decades, if not hundreds of years, when released into the environment through plastic waste leakage. In the pursuit of sustainable solutions to plastic waste recycling and repurposing, the enzymatic depolymerization of PET has emerged as a promising green alternative. However, the metabolic potential of the resulting PET breakdown molecules, such as the two-carbon (C2) molecule ethylene glycol (EG), remains largely untapped.
View Article and Find Full Text PDFChemSusChem
December 2024
Universität Greifswald: Universitat Greifswald, Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, GERMANY.
As global plastic consumption and littering escalate, innovative approaches to sustainable waste management are crucial. Enzymatic depolymerization has emerged as a promising recycling method for polyesters via monomer recovery under mild conditions. However, current research mainly focuses on using a single plastic feedstock, which can only be derived from complex and costly plastic waste sorting.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia.
Exposure to high temperatures during indoor and outdoor activities increases the risk of heat-related illness such as cramps, rashes, and heatstroke (HS). Fatal cases of HS are ten times more common than serious cardiac episodes in sporting scenarios, with untreated cases leading to mortality rates as high as 80%. Enhancing thermal comfort can be achieved through heat loss in enclosed spaces and the human body, utilizing heat transfer mechanisms such as radiation, conduction, convection, and evaporation, which do not require initial energy input.
View Article and Find Full Text PDFTalanta
December 2024
Department of Chemistry, Lorestan University, Khoramabad, Iran.
A significant challenge in membrane production is the need for affordable materials that provide high efficiency for their designated applications. Employing recycled materials in membrane manufacturing is viewed as a promising solution to tackle this challenge. In this work, a superwettable polyethylene terephthalate membrane modified with cobalt zeolitic imidazolate framework (PET/Co ZIF) is prepared for the first time from recycled plastic mineral water bottles and used to extract polycyclic aromatic hydrocarbons (PAHs) from aqueous samples followed by high-performance liquid chromatography with UV detection (HPLC-UV).
View Article and Find Full Text PDFMetab Eng
December 2024
Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden CO USA; BOTTLE Consortium, Golden CO USA. Electronic address:
Poly(ethylene terephthalate) (PET) is one of the most ubiquitous plastics and can be depolymerized through biological and chemo-catalytic routes to its constituent monomers, terephthalic acid (TPA) and ethylene glycol (EG). TPA and EG can be re-synthesized into PET for closed-loop recycling or microbially converted into higher-value products for open-loop recycling. Here, we expand on our previous efforts engineering and applying Pseudomonas putida KT2440 for PET conversion by employing adaptive laboratory evolution (ALE) to improve TPA catabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!