A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative Analysis of Heart Failure with Preserved Vs Reduced Ejection Fraction: Patient Characteristics, Outcomes, Mortality Prediction, and Machine Learning Model Development in the JoHFR. | LitMetric

Background: Heart failure (HF) is a global health challenge affecting millions, with significant variations in patient characteristics and outcomes based on ejection fraction. This study aimed to differentiate between HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF) with respect to patient characteristics, risk factors, comorbidities, and clinical outcomes, incorporating advanced machine learning models for mortality prediction.

Methodology: The study included 1861 HF patients from 21 centers in Jordan, categorized into HFrEF (EF <40%) and HFpEF (EF ≥ 50%) groups. Data were collected from 2021 to 2023, and machine learning models were employed for mortality prediction.

Results: Among the participants, 29.7% had HFpEF and 70.3% HFrEF. Significant differences were noted in demographics and comorbidities, with a higher prevalence of males, younger age, smoking, and familial history of premature ASCVD in the HFrEF group. HFpEF patients were typically older, with higher rates of diabetes, hypertension, and obesity. Machine learning analysis, mainly using the Random Forest Classifier, demonstrated significant predictive capability for mortality with an accuracy of 0.9002 and an AUC of 0.7556. Other models, including Logistic Regression, SVM, and XGBoost, also showed promising results. Length of hospital stay, need for mechanical ventilation, and number of hospital admissions were the top predictors of mortality in our study.

Conclusion: The study underscores the heterogeneity in patient profiles between HFrEF and HFpEF. Integrating machine learning models offers valuable insights into mortality risk prediction in HF patients, highlighting the potential of advanced analytics in improving patient care and outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268376PMC
http://dx.doi.org/10.2147/IJGM.S465388DOI Listing

Publication Analysis

Top Keywords

ejection fraction
16
patient characteristics
12
heart failure
8
reduced ejection
8
characteristics outcomes
8
machine learning
8
comparative analysis
4
analysis heart
4
failure preserved
4
preserved reduced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!