Helical liquids, formed by time-reversal pairs of interacting electrons in topological edge channels, provide a platform for stabilizing topological superconductivity upon introducing local and nonlocal pairings through the proximity effect. Here, we investigate the effects of electron-electron interactions and phonons on the topological superconductivity in two parallel channels of such helical liquids. Interactions between electrons in different channels tend to reduce nonlocal pairing, suppressing the topological regime. Additionally, electron-phonon coupling breaks the self duality in the electronic subsystem and renormalizes the pairing strengths. Notably, while earlier perturbative calculations suggested that longitudinal phonons have no effect on helical liquids themselves to the leading order, our nonperturbative analysis shows that phonons can induce transitions between topological and trivial superconductivity, thereby weakening the stability of topological zero modes. Our findings highlight practical limitations in realizing topological zero modes in various systems hosting helical channels, including quantum spin Hall insulators, higher-order topological insulators, and their fractional counterparts recently observed in twisted bilayer systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nh00254g | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Shanghai Jiaotong University: Shanghai Jiao Tong University, School of Chemistry and Chemical Engineeringg, Dongchuan Road, Num 800, 200092, Shanghai, CHINA.
Circularly polarized luminescence (CPL) film attracted considerable attention in information storage and encryption, three-dimensional display, and chiral recognition. However, due to the limited molecular mobility within thin film, achieving a high asymmetry factor and non-contact modulation of CPL remain challenging. In this work, color-switchable homochiral CPL films with high luminescence asymmetry factor (glum~0.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
Currently, circularly polarized luminescence (CPL) has drawn wide interest in 3D display, information storage, and optical sensing. However, traditional synthetic paths are often accompanied by low chiral optical intensity and complex processes. Cellulose nanocrystals (CNCs), with the properties of liquid crystals, can spontaneously arrange into the left-handed layered nanofilm, which enables them candidates in the construction of CPL materials.
View Article and Find Full Text PDFPhys Rev E
November 2024
William H. Miller III Department of Physics and Astronomy, Johns Hopkins University, Baltimore 21218, USA.
Composite materials made of polymers and liquid crystals have been widely employed in smart windows, optical filters, and bistable displays. However, it is often difficult to decipher the role of the polymer network architecture on the alignment and the texture of liquid crystals. In this study, we use a simple model system where a small amount of polymerizable liquid crystalline monomer is mixed in a liquid crystal that exhibits both a smectic phase and a cholesteric phase with a large helical pitch.
View Article and Find Full Text PDFPhys Rev E
November 2024
Landau Institute for Theoretical Physics, Russian Academy of Sciences, 1-A Akademika Semenova av., 142432 Chernogolovka, Russia and National Research University Higher School of Economics, Faculty of Physics, Myasnitskaya 20, 101000 Moscow, Russia.
We study one-point statistics of helical turbulent pulsations in the background of a three-dimensional large-scale vortex in a rotating fluid. Assuming that the helical flow is created by a statistically axially symmetric random force with broken mirror symmetry, we analytically calculate the velocity-vorticity mean including its magnitude and the anisotropy. For electrically conducting liquid, we examine the α-effect in the system.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!