Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Low-energy visible-light-activated carbon dots (CDs)-based afterglow materials are difficult to realize due to the inherent aromatic carbon with high-energy absorption and the lack of effective regulation. Here, a new strategy for visible-light-activated CDs is proposed by combining dual-confinement and surface-ionization, which employs NaOH for additional confinement and surface ionization of CDs in a single boric acid (BA) matrix. The comparison experiments show that: i) shifting the excitation from UV-light to vis-light is realized by enhancing the low-energy surface states n→π* transition of the CDs by surface ionization of NaOH. ii) CDs are additionally protected by a more stable Na─O ionic bond after NaOH confinement, resulting in a brighter afterglow. iii) the energy gap (ΔE) between the lowest singlet and triplet states is gradually shortened as increasing NaOH content, facilitating intersystem crossing, prolonging the lifetime of triplet excitons and efficiency. Further, vis-light-excited colorful afterglow powders are fabricated based on Förster Resonant Energy Transfer by combining the fluorescent dye 5-carboxytetramethylrhodamine. Finally, advanced white-light-activated time-resolved anti-counterfeiting and intelligent traffic flashing signs are realized. The work may shed new light on the design of low-energy-activated afterglow materials and broaden the application scenarios in the daily lives of human society.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202400921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!