Background: Ascorbic acid can regulate the function of the immune system. This study aimed to investigate the underlying mechanisms of ascorbic acid in plasma cell differentiation and rheumatoid arthritis (RA).
Methods: Mice were intraperitoneally injected with either ascorbic acid or an equivalent volume of phosphate-buffered saline (PBS). To elucidate the effects of ascorbic acid on arthritis, we utilized a collagen induced arthritis mouse model (CIA). To investigate the effects of ascorbic acid on antibody response, mice were immunized with (4-Hydroxy-3-nitrophenylacetyl)-Ficoll (NP-Ficoll) or (4-hydroxy-3-nitrophenyl) acetyl-keyhole limpet hemocyanin (NP-KLH) to elicit a T-cell independent (TI) or T-cell dependent (TD) antibody response. To clarify the ability of ascorbic acid on plasma cell production, we tracked the B cell differentiation fate on the NP-specific B1-8 BCR transgenic background.
Results: Ascorbic acid-injected mice demonstrated significantly delayed disease incidence and decreased disease severity compared to PBS-injected mice. Ascorbic acid can reduce the titers of autoantibodies in both arthritis and lupus mice models. Ascorbic acid can significantly reduce the number of plasma cells and the production of antigen-specific antibodies in TI and TD antibody response. In addition, ascorbic acid can disrupt the antibody affinity maturation. Through B1-8 adoptive transfer experiments, it has been demonstrated that ascorbic acid restrains B cell differentiation into plasma cells in a cell-intrinsic manner. After in-depth exploration, we found that ascorbic acid can block the cell cycle of B cells and promote cell apoptosis. Mechanistically, ascorbic acid inhibited the production of autoreactive plasma cells by inhibiting the Stat3 signaling pathway.
Conclusion: Our study demonstrates that ascorbic acid has the ability to suppress the generation of autoreactive plasma cells, diminish the production of autoantibodies, and consequently delay the onset of rheumatoid arthritis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267742 | PMC |
http://dx.doi.org/10.1186/s12964-024-01756-x | DOI Listing |
Sci Rep
January 2025
Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
Gas foam injection offers a viable solution to challenges faced in oil reservoirs, yet ensuring optimal foamability and stability remains a pivotal hurdle in practical field operations. This study presents a novel synthesis procedure to create silica (SiO) Janus nanoparticles (JNPs) and examines their potential to enhance gas foam stability for enhanced oil recovery (EOR) applications. Two variations of SiO JNPs were synthesized via a masking procedure, employing oleic acid and ascorbic acid within a Pickering emulsion, marking a pioneering approach.
View Article and Find Full Text PDFAnal Chem
January 2025
Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
The screening of glycoprotein markers has become an integral part of the in vitro diagnosis of malignant tumors. Herein, an electrochemical method based on alkaline phosphatase (ALP)-mediated enzymatic silver deposition is reported for the highly sensitive detection of glycoprotein tumor markers, in which ALP enzymes are decorated to the glycan moieties of targets via the lectin-carbohydrate interactions. As glycoproteins are conjugated with multiple glycan chains, lectin-mediated labeling can result in the decoration of each target with multiple ALP enzymes.
View Article and Find Full Text PDFJ Trace Elem Med Biol
January 2025
Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan. Electronic address:
Lead (Pb) toxicity impairs the growth, yield, and biochemical traits of rice, making it essential to mitigate Pb stress in soil and restore its growth and production. This study investigated the potential of ascorbic acid-coated quantum dots (AsA-QDs) in alleviating Pb stress in two rice cultivars, Japonica (JP-5) and Indica (Super Basmati), grown in pots under Pb stress (50 mg/kg as lead chloride) with AsA-QD suspensions (50 ppm and 100 ppm) as treatments. The synthesized AsA-QDs were characterized by zeta potential (-14.
View Article and Find Full Text PDFReprod Med Biol
January 2025
Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences Yamagata University Tsuruoka Japan.
Purpose: This study aimed to investigate the molecular mechanisms associated with chromosome segregation errors caused by intrinsic oxidative stress during in vitro oocyte maturation (IVM) using oocytes from -deficient (KO) mice.
Methods: Ovulated or in vitro matured cumulus-cells oocyte complexes (COCs) were collected from wild-type (WT) and KO mice and evaluated chromosome alignment, chromosome segregation, meiotic progression, and BUBR1 and REC8 protein expression levels.
Results: In 21% O IVM, the KO had significantly higher frequencies of chromosome misalignment and segregation errors compared to the WT, and they also reached Germinal Vesicle Break Down (GVBD) and M I stages peak earlier and showed a shorter M I stage residence time compared to the WT.
BioTechnologia (Pozn)
December 2024
Department of Biology, Eskişehir Technical University (ESTU), Tepebaşı/Eskişehir, Türkiye.
Background: The present study investigated the antioxidant, antimicrobial, and partial enzymatic properties of 52 thermophilic cyanobacteria isolates .
Materials And Methods: The DPPH scavenging method was applied to test the antioxidant potential of isolates' methanol extracts. Agar block diffusion and agar well diffusion methods were used to evaluate the antimicrobial activity and measured in milimeters.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!