Background: Plant meristems are structured organs consisting of distinct layers of stem cells, which differentiate into new plant tissue. Mutations in meristematic layers can propagate into large sectors of the plant. However, the characteristics of meristematic mutations remain unclear, limiting our understanding of the genetic basis of somaclonal phenotypic variation.
Results: Here, we analyse the frequency and distribution of somatic mutations in an apricot tree. We separately sequence the epidermis (developing from meristem layer 1) and the flesh (developing from meristem layer 2) of several fruits sampled across the entire tree. We find that most somatic mutations (> 90%) are specific to individual layers. Interestingly, layer 1 shows a higher mutation load than layer 2, implying different mutational dynamics between the layers. The distribution of somatic mutations follows the branching of the tree. This suggests that somatic mutations are propagated to developing branches through axillary meristems. In turn, this leads us to the unexpected observation that the genomes of layer 1 of distant branches are more similar to each other than to the genomes of layer 2 of the same branches. Finally, using single-cell RNA sequencing, we demonstrate that layer-specific mutations were only transcribed in the cells of the respective layers and can form the genetic basis of somaclonal phenotypic variation.
Conclusions: Here, we analyse the frequency and distribution of somatic mutations with meristematic origin. Our observations on the layer specificity of somatic mutations outline how they are distributed, how they propagate, and how they can impact clonally propagated crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267851 | PMC |
http://dx.doi.org/10.1186/s13059-024-03337-0 | DOI Listing |
NPJ Precis Oncol
December 2024
Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
PARP inhibitors (PARPi) have shown efficacy in tumours harbouring mutations in homologous recombination repair (HRR) genes. Somatic HRR mutations have been described in patients with Non-Small Cell Lung Cancer (NSCLC), but PARP inhibitors (PARPi) are not yet a therapeutic option. Here we assessed the homologous recombination status of early-stage NSCLC and explored the therapeutic benefit of PARPi in preclinical models.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, USA; Center for Molecular Biology of RNA, University of California, Santa Cruz, California, USA. Electronic address:
The spliceosome protein, SF3B1 associates with U2 snRNP during early spliceosome assembly for pre-mRNA splicing. Frequent somatic mutations in SF3B1 observed in cancer necessitates characterization of its role in identifying the branchpoint adenosine of introns. Remarkably, SF3B1 is the target of three distinct natural product drugs, each identified by their potent anti-tumor properties.
View Article and Find Full Text PDFGeorgian Med News
October 2024
6Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India.
Breast cancer is a disease that has a 1 in 8 lifetime risk for women, making it an international burden. Although breast cancer mostly affects women, men have a lifetime risk of around 1 in 1000. The majority of breast cancer instances continue linked to breast cancers that have acquired somatic mutations during a person's lifespan.
View Article and Find Full Text PDFProbl Radiac Med Radiobiol
December 2024
State Institution «National Research Center of Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.
Objective: To establish the level of chromosomal instability in human peripheral blood lymphocytes during thedevelopment of secondary radiation-induced bystander effect.
Materials And Methods: Human peripheral blood lymphocytes; culture of human non-small-cell lung cancer cell lineA549 (irradiated in vitro by 137Cs in a dose of 0.50 Gy/unirradiated).
Hepatology
December 2024
Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Background And Aims: Hepatocellular carcinoma (HCC) recurrence is a major factor limiting long-time survival and the cause of most deaths in patients with HCC. However, molecular characterisation and potential therapeutic targets of recurrent HCC remain mostly unknown.
Approach And Results: We performed whole-exome sequencing (WES) in 63 matched primary and recurrent HCC tumours and combined the data with whole-genome sequencing (WGS) results in 43 paired samples from our previous study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!