Background: Electronic Health Records (EHR) are widely used to develop clinical prediction models (CPMs). However, one of the challenges is that there is often a degree of informative missing data. For example, laboratory measures are typically taken when a clinician is concerned that there is a need. When data are the so-called Not Missing at Random (NMAR), analytic strategies based on other missingness mechanisms are inappropriate. In this work, we seek to compare the impact of different strategies for handling missing data on CPMs performance.
Methods: We considered a predictive model for rapid inpatient deterioration as an exemplar implementation. This model incorporated twelve laboratory measures with varying levels of missingness. Five labs had missingness rate levels around 50%, and the other seven had missingness levels around 90%. We included them based on the belief that their missingness status can be highly informational for the prediction. In our study, we explicitly compared the various missing data strategies: mean imputation, normal-value imputation, conditional imputation, categorical encoding, and missingness embeddings. Some of these were also combined with the last observation carried forward (LOCF). We implemented logistic LASSO regression, multilayer perceptron (MLP), and long short-term memory (LSTM) models as the downstream classifiers. We compared the AUROC of testing data and used bootstrapping to construct 95% confidence intervals.
Results: We had 105,198 inpatient encounters, with 4.7% having experienced the deterioration outcome of interest. LSTM models generally outperformed other cross-sectional models, where embedding approaches and categorical encoding yielded the best results. For the cross-sectional models, normal-value imputation with LOCF generated the best results.
Conclusion: Strategies that accounted for the possibility of NMAR missing data yielded better model performance than those did not. The embedding method had an advantage as it did not require prior clinical knowledge. Using LOCF could enhance the performance of cross-sectional models but have countereffects in LSTM models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270887 | PMC |
http://dx.doi.org/10.1186/s12911-024-02612-1 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Pediatrics, Huoqiu First People's Hospital, Lu'an, Anhui, China.
Lobar pneumonia is an acute inflammation with increasing incidence globally. Delayed treatment can lead to severe complications, posing life-threatening risks. Thus, it is crucial to determine effective treatment methods to improve the prognosis of children with lobar pneumonia.
View Article and Find Full Text PDFInt J Cancer
January 2025
Inequalities in Cancer Outcomes Network (ICON) group, Department of Health Services Research and Policy, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK.
We aimed to investigate socio-economic inequalities in second primary cancer (SPC) incidence among breast cancer survivors. Using Data from cancer registries in England, we included all women diagnosed with a first primary breast cancer (PBC) between 2000 and 2018 and aged between 18 and 99 years and followed them up from 6 months after the PBC diagnosis until a SPC event, death, or right censoring, whichever came first. We used flexible parametric survival models adjusting for age and year of PBC diagnosis, ethnicity, PBC tumour stage, comorbidity, and PBC treatments to model the cause-specific hazards of SPC incidence and death according to income deprivation, and then estimated standardised cumulative incidences of SPC by deprivation, taking death as the competing event.
View Article and Find Full Text PDFEquine Vet J
January 2025
Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS - SGGW), Warsaw, Poland.
Background: The temporomandibular joint (TMJ) is a unique joint that enables mandibular movement. Temporomandibular diseases (TMDs) impair joint function, leading to more or less specific clinical signs.
Objectives: To compile and disseminate clinical data and research findings from existing publications on equine TMD.
Viruses
December 2024
Life Sciences, Health, and Engineering Department, The Roux Institute, Northeastern University, Portland, ME 04101, USA.
JC polyomavirus (JCPyV) establishes a persistent, asymptomatic kidney infection in most of the population. However, JCPyV can reactivate in immunocompromised individuals and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease with no approved treatment. Mutations in the hypervariable non-coding control region (NCCR) of the JCPyV genome have been linked to disease outcomes and neuropathogenesis, yet few metanalyses document these associations.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Biomedical and Robotics Engineering, Incheon National University, Incheon 22012, Republic of Korea.
With the rise of modern healthcare monitoring, heart rate (HR) estimation using remote photoplethysmography (rPPG) has gained attention for its non-contact, continuous tracking capabilities. However, most HR estimation methods rely on stable, fixed sampling intervals, while practical image capture often involves irregular frame rates and missing data, leading to inaccuracies in HR measurements. This study addresses these issues by introducing low-complexity timing correction methods, including linear, cubic, and filter interpolation, to improve HR estimation from rPPG signals under conditions of irregular sampling and data loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!