Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Patients with lung adenocarcinoma (LUAD) have a low response rate to immune checkpoint blockade. It is highly important to explore the tumor immune escape mechanism of LUAD patients and expand the population of patients who may benefit from immunotherapy.
Methods: Based on 954 bulk RNA-seq data of LUAD patients and 15 single-cell RNA-seq data, the relationships between tumor immune dysfunction and exclusion (TIDE) scores and survival prognosis in each patient were calculated and evaluated, and the immune escape mechanism affecting the independent prognosis of LUAD patients was identified. Functional enrichment analysis explored the antitumour immune response and biological behavior of tumor cells among different LUAD groups. Single-cell annotation and pseudotemporal analysis were used to explore the target molecules and immune escape mechanisms of LUAD.
Results: Myeloid-derived suppressor cells (MDSCs) and IRF8 were identified as risk and protective factors for the independent prognosis of LUAD patients, respectively. In the tumor microenvironment of patients with high infiltration of MDSCs, the antitumor immune response is significantly suppressed, while tumor cell division, proliferation, and distant metastasis are significantly enhanced. Single-cell RNA-seq analysis revealed that IRF8 is an important regulator of MDSC differentiation in LUAD myeloid cells. In addition, IRF8 may regulate the differentiation of MDSCs through the IL6-JAK-STAT3 signalling pathway.
Conclusions: IRF8 deficiency impairs the normal development of LUAD myeloid cells and induces their differentiation into MDSCs, thereby accelerating the immune escape of LUAD cells. IRF8-targeted activation to inhibit the formation of MDSCs may be a new target for immunotherapy in LUAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270856 | PMC |
http://dx.doi.org/10.1186/s12967-024-05519-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!