A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A pseudonymized corpus of occupational health narratives for clinical entity recognition in Spanish. | LitMetric

Despite the high creation cost, annotated corpora are indispensable for robust natural language processing systems. In the clinical field, in addition to annotating medical entities, corpus creators must also remove personally identifiable information (PII). This has become increasingly important in the era of large language models where unwanted memorization can occur. This paper presents a corpus annotated to anonymize personally identifiable information in 1,787 anamneses of work-related accidents and diseases in Spanish. Additionally, we applied a previously released model for Named Entity Recognition (NER) trained on referrals from primary care physicians to identify diseases, body parts, and medications in this work-related text. We analyzed the differences between the models and the gold standard curated by a physician in detail. Moreover, we compared the performance of the NER model on the original narratives, in narratives where personal information has been masked, and in texts where the personal data is replaced by another similar surrogate value (pseudonymization). Within this publication, we share the annotation guidelines and the annotated corpus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267746PMC
http://dx.doi.org/10.1186/s12911-024-02609-wDOI Listing

Publication Analysis

Top Keywords

entity recognition
8
personally identifiable
8
pseudonymized corpus
4
corpus occupational
4
occupational health
4
health narratives
4
narratives clinical
4
clinical entity
4
recognition spanish
4
spanish despite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!