A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A quantum mechanistic investigation into the unusual reactions of nitrilimine and nitrile oxide with 2,3,4,5-tetraphenylcyclopentadienone. | LitMetric

Context: The theoretical study investigates the [3 + 2] cycloaddition (32CA) reactions between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone and benzonitrile oxide with 2,3,4,5-tetraphenylcyclopentadienone. Nitrilimines and nitrile oxides are dipoles used in the synthesis of several heterocyclic compounds, including spiropyrazoline oxindoles and isoxazolines. The derivatives of these compounds are found with different biological activities, such as ion channel blockers, anti-inflammatory and anticancer agents as well as antimalarial. Conceptual density functional theory (CDFT) analysis, along with the activation energies of the 32CA reaction between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone, demonstrates concordance with the empirical findings. The 32CA reaction is found to proceed through a very polar single-step asynchronous mechanism. While deductions from the activation energies of the 32CA reaction between benzonitrile oxide and 2,3,4,5-tetraphenylcyclopentadienone are found to lead to the experimental product, the parr function analysis could not explain the observed chemo- and regioselectivity. This 32CA reaction is also found to proceed through a one-step asynchronous mechanism, though with a non-polar character. The modulation of substituents positioned at the reactive sites of the reactants is found to influence the kinetics, thermodynamics, and CDFT parameters of the two 32CA reactions, consequently impacting the observed selectivities.

Methods: The 32CA reactions between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone and benzonitrile oxide with 2,3,4,5-tetraphenylcyclopentadienone have been explored theoretically using the density functional theory method at the hybrid ωB97X-D coupled with the split valence triple-ξ (TZ) basis set as implemented in the Gaussian 09. Solvent effects were taken into account by full optimization of the gas phase geometries through the polarizable continuum model developed within the self-consistent reaction field.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-024-06074-0DOI Listing

Publication Analysis

Top Keywords

oxide 2345-tetraphenylcyclopentadienone
16
32ca reaction
16
32ca reactions
12
n-diphenyl nitrilimine
12
nitrilimine 2345-tetraphenylcyclopentadienone
12
benzonitrile oxide
12
reactions n-diphenyl
8
2345-tetraphenylcyclopentadienone benzonitrile
8
density functional
8
functional theory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!