A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Third-order nonlinear Hall effect in a quantum Hall system. | LitMetric

Third-order nonlinear Hall effect in a quantum Hall system.

Nat Nanotechnol

State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China.

Published: October 2024

In two-dimensional systems, perpendicular magnetic fields can induce a bulk band gap and chiral edge states, which gives rise to the quantum Hall effect. The quantum Hall effect is characterized by zero longitudinal resistance (R) and Hall resistance (R) plateaus quantized to h/(υe) in the linear response regime, where υ is the Landau level filling factor, e is the elementary charge and h is Planck's constant. Here we explore the nonlinear response of monolayer graphene when tuned to a quantum Hall state. We observe a third-order Hall effect that exhibits a nonzero voltage plateau scaling cubically with the probe current. By contrast, the third-order longitudinal voltage remains zero. The magnitude of the third-order response is insensitive to variations in magnetic field (down to ~5 T) and in temperature (up to ~60 K). Moreover, the third-order response emerges in graphene devices with a variety of geometries, different substrates and stacking configurations. We term the effect third-order nonlinear response of the quantum Hall state and propose that electron-electron interaction between the quantum Hall edge states is the origin of the nonlinear response of the quantum Hall state.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-024-01730-1DOI Listing

Publication Analysis

Top Keywords

quantum hall
28
nonlinear response
12
hall state
12
hall
10
third-order nonlinear
8
hall quantum
8
edge states
8
third-order response
8
response quantum
8
quantum
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!