Rapidly waning immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires continued global access to affordable vaccines. Globally, inactivated SARS-CoV-2 vaccines have been widely used during the SARS-CoV-2 pandemic. In this proof-of-concept study we adapted an original-D614G SARS-CoV-2 virus to Vero cell culture as a strategy to enhance inactivated vaccine manufacturing productivity. A passage 60 (P60) virus showed enhanced fitness and 50-fold increased virus yield in a bioreactor compared to the original-D614G virus. It further remained susceptible to neutralization by plasma from SARS-CoV-2 vaccinated and convalescent individuals, suggesting exposure of relevant epitopes. Monovalent inactivated P60 and bivalent inactivated P60/omicron BA.1 vaccines induced neutralizing responses against original-D614G and BA.1 viruses in mice and hamsters, demonstrating that the P60 virus is a suitable vaccine antigen. Antibodies further cross-neutralized delta and BA.5 viruses. Importantly, the inactivated P60 vaccine protected hamsters against disease upon challenge with original-D614G or BA.1 virus, with minimal lung pathology and lower virus loads in the upper and lower airways. Antigenicity of the P60 virus was thus retained compared to the original virus despite the acquisition of cell culture adaptive mutations. Consequently, cell culture adaptation may be a useful approach to increase yields in inactivated vaccine antigen production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269720 | PMC |
http://dx.doi.org/10.1038/s41598-024-67570-0 | DOI Listing |
BioDrugs
January 2025
Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.
View Article and Find Full Text PDFGeroscience
January 2025
Buck Institute for Research On Aging, Novato, CA, 94945, USA.
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Bioprocess Research and Development (BRD), WuXi Biologics, Shanghai, China.
Serving as a dedicated process analytical technology (PAT) tool for biomass monitoring and control, the capacitance probe, or dielectric spectroscopy, is showing great potential in robust pharmaceutical manufacturing, especially with the growing interest in integrated continuous bioprocessing. Despite its potential, challenges still exist in terms of its accuracy and applicability, particularly when it is used to monitor cells during stationary and decline phases. In this study, data pre-processing methods were first evaluated through cross-validation, where the first-order derivative emerged as the most effective method to diminish variability in prediction accuracy across different training datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!