General instability of dipeptides in concentrated sulfuric acid as relevant for the Venus cloud habitability.

Sci Rep

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.

Published: July 2024

Recent renewed interest in the possibility of life in the acidic clouds of Venus has led to new studies on organic chemistry in concentrated sulfuric acid. We have previously found that the majority of amino acids are stable in the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest being water). The natural next question is whether dipeptides, as precursors to larger peptides and proteins, could be stable in this environment. We investigated the reactivity of the peptide bond using 20 homodipeptides and find that the majority of them undergo solvolysis within a few weeks, at both sulfuric acid concentrations. Notably, a few exceptions exist. HH and GG dipeptides are stable in 98% w/w sulfuric acid for at least 4 months, while II, LL, VV, PP, RR and KK resist hydrolysis in 81% w/w sulfuric acid for at least 5 weeks. Moreover, the breakdown process of the dipeptides studied in 98% w/w concentrated sulfuric acid is different from the standard acid-catalyzed hydrolysis that releases monomeric amino acids. Despite a few exceptions at a single concentration, no homodipeptides have demonstrated stability across both acid concentrations studied. This indicates that any hypothetical life on Venus would likely require a functional substitute for the peptide bond that can maintain stability throughout the range of sulfuric acid concentrations present.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269616PMC
http://dx.doi.org/10.1038/s41598-024-67342-wDOI Listing

Publication Analysis

Top Keywords

sulfuric acid
32
acid concentrations
16
concentrated sulfuric
12
98% w/w
12
acid
9
sulfuric
8
amino acids
8
peptide bond
8
w/w sulfuric
8
general instability
4

Similar Publications

The need for stringent phosphorus removal from domestic wastewater is increasing to mitigate eutrophication, while efficient phosphate reuse is critical due to the global phosphate crisis. Combining aluminum sulfate (ALS) with high molecular weight organic polymers achieved 95-99% removal of particles, turbidity, and phosphates, reducing ALS usage by 40%. We propose mechanisms to explain the enhanced treatment efficiency.

View Article and Find Full Text PDF

Evaporation or freezing of water-rich fluids with dilute concentrations of dissolved salts can produce brines, as observed in closed basins on Earth and detected by remote sensing on icy bodies in the outer Solar System. The mineralogical evolution of these brines is well understood in regard to terrestrial environments, but poorly constrained for extraterrestrial systems owing to a lack of direct sampling. Here we report the occurrence of salt minerals in samples of the asteroid (101955) Bennu returned by the OSIRIS-REx mission.

View Article and Find Full Text PDF

This study examines the biocompatibility, osteogenic potential, and effectiveness of polyether ether ketone (PEEK) composites for treating osteonecrosis, seeking to establish a theoretical basis for clinical application. A range of PEEK composite materials, including sulfonated polyether ether ketone (SPEEK), polydopamine-sulfonated polyether ether ketone (SPEEK-PDA), bone-forming peptide-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-BFP), and vascular endothelial growth factor-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-VEGF), were constructed by concentrated sulfuric acid sulfonation, polydopamine modification and grafting of bioactive factors. The experiments involved adult male New Zealand rabbits aged 24-28 weeks and weighing 2.

View Article and Find Full Text PDF

Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.

View Article and Find Full Text PDF

Background/purpose: Early osseointegration of titanium (Ti) dental implants relies on the surface topography. Surface modification of Ti seeks to enhance bone regeneration around implants. Acid etching is the simple, less technique sensitive and cost-effective technique for surface treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!