Healable, Recyclable, and Upcyclable Gel Membranes for Efficient Carbon Dioxide Separation.

Angew Chem Int Ed Engl

National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.

Published: October 2024

Ionic liquids (ILs) are prized for their selective dissolution of carbon dioxide (CO), leading to their widespread use in ionogel membranes for gas separation. Despite their advantages, creating sustainable ionogel membranes with high IL contents poses challenges due to limited mechanical strength, leakage risks, and poor recyclability. Herein, we leverage copolymerized and supramolecularly bound ILs to develop ionogel membranes with high mechanical strength, zero leakage, and excellent self-healing and recycling capabilities. These membranes exhibit superior ideal selectivity for gas separation compared to other reported ionogel membranes, achieving a CO/nitrogen selectivity of 61.7 and a CO/methane selectivity of 24.6, coupled with an acceptable CO permeability of 186.4 Barrer. Additionally, these gas separation ionogel membranes can be upcycled into ionic skins for sensing applications, further enhancing their utility. This research outlines a strategic approach to molecularly engineer ionogel membranes, offering a promising pathway for developing sustainable, high-performance materials for advanced gas separation technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202411270DOI Listing

Publication Analysis

Top Keywords

ionogel membranes
24
gas separation
16
membranes
8
carbon dioxide
8
membranes high
8
mechanical strength
8
strength leakage
8
ionogel
6
separation
5
healable recyclable
4

Similar Publications

In this work, we investigate the development of polymer electrolytes for sodium batteries based on sulfonamide functional polymer nanoparticles (NaNPs). The synthesis of the polymer NaNPs is carried out by emulsion copolymerization of methyl methacrylate and sodium sulfonamide methacrylate in the presence of a crosslinker, resulting in particle sizes of 50 nm, as shown by electron microscopy. Then, gel polymer electrolytes are prepared by mixing polymer NPs and different organic plasticizers including carbonates, glymes, sulfolanes and ionic liquids.

View Article and Find Full Text PDF

3D Printable Polymer Electrolytes for Ionic Conduction based on Protic Ionic Liquids.

Chemphyschem

November 2024

Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam-Golm, Germany.

A range of protic ionic liquids (PILs) based on tri-n-alkylammonium cations and mesylate/triflate anions were incorporated into a polymer matrix to form ionogels (IGs). These systems were investigated for their thermal and electrochemical behaviour, as well as under the aspect of ion motion via PFG-NMR. The ionic conductivities of the ILs/IGs are in the range of 10-10 S/cm at elevated temperatures and the diffusion coefficients are around 10 m s.

View Article and Find Full Text PDF

Healable, Recyclable, and Upcyclable Gel Membranes for Efficient Carbon Dioxide Separation.

Angew Chem Int Ed Engl

October 2024

National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.

Ionic liquids (ILs) are prized for their selective dissolution of carbon dioxide (CO), leading to their widespread use in ionogel membranes for gas separation. Despite their advantages, creating sustainable ionogel membranes with high IL contents poses challenges due to limited mechanical strength, leakage risks, and poor recyclability. Herein, we leverage copolymerized and supramolecularly bound ILs to develop ionogel membranes with high mechanical strength, zero leakage, and excellent self-healing and recycling capabilities.

View Article and Find Full Text PDF

Over the last years, solid-state electrolytes made of an ionic liquid (IL) confined in a solid (inorganic or polymer) matrix, also known as ionogels, have been proposed to solve the leakage problems occurring at high temperatures in classical electrical double-layer capacitors (EDLCs) with an organic electrolyte, and thereof improve the safety. However, making ionogel-based EDLCs perform with reasonable power at low temperature is still a major challenge due to the high melting point of the confined IL. To overcome these limitations, the present contribution discloses ionogel films prepared in a totally oxygen/moisture-free atmosphere by encapsulating 70 wt % of an equimolar mixture of 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and 1-ethyl-3-methylimidazolium tetrafluoroborate - [EMIm][BF][FSI] - into a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) network.

View Article and Find Full Text PDF

In recent years, the quest to advance fuel cell technologies has intensified, driven by the imperative to reduce reliance on hydrocarbon-derived fuels and mitigate pollutant emissions. Proton exchange membranes are a critical material of fuel cell technologies. The potential of ionic liquid-based polymer inclusion membranes or ionogels for proton exchange membrane fuel cells (PEMFCs) has recently appeared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!